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ABSTRACT

Introduction and Aim: Autism Spectrum Disorder (ASD) is a multifaceted neurodevelopmental disorder with complicated origins,
and recent research points to a possible connection between dysbiosis of the gut microbiome and the pathophysiology of ASD.

Materials and Methods: In the present study, gut microbiome samples from public repositories (NCBI BioProject IDs:
PRINA815491 and PRINA642975) were meta-analyzed using an integrated computational methodology. The gut microbiome
16S rRNA samples (n = 98) were subjected to taxonomic classification, functional profiling, statistical analysis as well as LEfSE
and T-test analysis to find microbial biomarkers. Lastly, Machine Learning (ML) was employed to find the important features
related to ASD.

Results: The results indicated nine significant features namely Sutterella, Prevotella, Blautia, Substance dependence pathway,
Circulatory system pathway, Parasitic infectious disease, K02014 (TC.FEV.OM) gene, K03585 (acrA) gene, and K06147 (ABCB-
BAC) gene. Moreover, complex relationships between microbial taxa, functional pathways, and genetic components were
discovered by network analysis utilizing Cytoscape, which provided insight into possible microbial-host interactions and their
relevance to the pathophysiology of ASD.

Conclusion: Overall, our research sheds light on potential microbial biomarkers, pathways, and genes dysregulated in ASD, as well
as the gut microbiome and functional changes linked to the disorder. These findings suggest interesting directions for future
research and therapeutic approaches targeting the gut-brain axis in the management of ASD. They also add to a fuller knowledge of
the intricate interactions between the gut microbiome, host genetics, and ASD pathogenesis.
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1. Introduction world to 1 in 132 people, with boys experiencing a

isorders pertaining to the growth and

development of the brain or central nervous

system (CNS) are known as
neurodevelopmental disorders. A child diagnosed with
autism spectrum disorder (ASD) has severe
neurodevelopmental impairments that affect their
capacity to connect and communicate with others (1).
ASD frequently co-occurs with other clinical symptoms,
such as gastrointestinal abnormalities (up to 70%),
motor deficits (79%), sleep issues (50-80%), and
intellectual incapacity (45%), in addition to these
important conditions (2). In the past several years, the

prevalence of autism has increased significantly over the
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notably higher incidence of the disorder than girls (3-4).
From 1 in 150 children in 2000 to 1 in 54 in 2016, the
frequency of ASD has increased in the US (CDC, 2024).
ASD children have a greater frequency of
gastrointestinal (GI) problem comorbidity than
neurotypical (NT) children, and there is evidence of a
relationship between the gut microbiome and ASD (5-8).
Abdominal pain, bloating, constipation, or loose stools
are some of the symptoms of these GI issues (6). By
making it easier to integrate multi-omics data, several
research have shown how successful machine learning
(ML) is in characterizing gut dysbiosis in ASD.
Additionally, these methods have been used to
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investigate the connection between gut microbiome and
the intensity of ASD symptoms (9).

Despite significant attempts, the precise mechanisms
behind ASD remain unclear. ASD presents a complex
neurodevelopmental profile with diverse symptoms and
biomarkers, underscoring the importance of
understanding its underlying mechanisms for early
diagnosis and effective treatment. Our goal was to
devise a computational method for taxonomic and
functional profiling and correlational analysis within the
gut microbiome, emphasizing identifying patterns
linked to ASD. We compared the taxonomic and
functional profiles of the control and ASD samples to
understand the differences in the microbiomes and their
functional makeup and to investigate the gut
microbiome settings under the two disease conditions.
With these initiatives, we hope to understand better the
complex interactions and mechanisms unique to
dysbiotic conditions in the gut microbiome that are
linked to a higher risk of autism in humans. This research
may clarify how the gut microbiome contributes to
autism pathophysiology, opening the door to more
focused treatments and interventions.

2. MATERIALSAND METHODS

2.1. Dataacquisition and retrieval

We examined two publicly available datasets employing
16S rRNA gut microbiome data from the NCBI
Bioproject. The studies were based on the gut
microbiomes of children aged 2 to 10 years old, stratified
by disease condition (Control/Autistic), and were
obtained for our work using NCBI BioProject IDs
PRINAS815491 and PRINA642975. A total of 98 raw
samples were downloaded in Ubuntu 20.04.4 in the
FASTQ file format and categorized by disease
condition.

2.2. 16SrRNA data bioinformatics analysis

The Parallel-Meta 3 software (version 3.3.2) was
utilized to classify the pre-processed data
taxonomically. The genome sequences were aligned to
the reference database using Bowtie2, which produced

an Operational Taxonomic Units (OTUs) table
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exhibiting relative abundances. Using SILVA version
138 and Greengenes version 13-8, as reference
databases, the "PM-select-taxa" command made it
easier to create taxa feature tables. Then, log10(1 + x)
normalization of absolute counts was applied for
transformed abundances visualization in R using the
ggplot2 (version 4.1.2) and ggpubr packages.
Additionally, using the KEGG database, the "PM-select-
func" tool created functional characteristic tables for
each sample, normalizing absolute counts and utilizing
the ggplot2 library in R to visualize pathway
abundances.

2.3. Diversity analysis

The vegan library's “diversity” command, which is
centered on Simpson's and Shanon's index, was used to
calculate the Alpha-diversity for both taxonomic
classification and functional profiling data in R. The
ggplot? and ggpubr libraries were used to show the
results. The beta-diversity calculation was performed
using the Manhattan distance measure using a custom
function based on the vegan and ape library, and
visualized using the ggplot2 packages in R.

2.4. Variation analysis

Using the vegan library's “adonis2” command in R,
PERMANOVA analysis based on the Manhattan
distance method was carried out for the findings of both
taxonomic classification and functional profiling. The R
ggplot? library was used to visualize the R2 values
showing variations in the makeup of microbes and
pathways.

2.5. Biomarker Identification using LEfSE analysis,
T-test, and Systems Biology approaches

Using the MicrobiomeAnalyst tool, LEfSE analysis was
performed based on results for taxonomic classification.
To identify microbial biomarkers across different
disease conditions, the minimum count threshold was
assigned as 4, features with low counts and variations
were eliminated based on sample prevalence set at 20%
and coefficient of variation, respectively, and was
normalized using the Total sum scaling (TSS) method.
The FDR-adjusted p-value cut-off was changed to 0.05.
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T-test was conducted using the dp/lyr and rstatix libraries
in the R to check the statistical difference of each
microbiological taxonomy or functional profile based on
"group"(disease condition) and its significance. The
effect size was computed using Cohen's D to standardize
the difference between the two groups (control and
autistic). The functional and microbiological
biomarkers that were found, together with the associated
P-values and effect sizes, were shown using the ggplot2
and ggpubr libraries.

Furthermore, correlations among the microbes,
pathways, and genes were calculated using the “corr”
function in Python based on Spearman's correlational
scores. Separate correlation files were generated for
each pair (pathways-microbes, pathways-genes,
microbes-genes). These correlation files were then
imported into Cytoscape version 3.10.2. using the
MetScape plugin. Three individual networks depicting
correlations between pathways-microbes, pathways-
genes, and microbes-genes were created. The “Merge
Network” function in Cyfoscape was then utilized to
combine the paired networks into one integrated
network. The network was then enriched by adding
annotations. Further, we utilized the CytoHubba plugin
to identify the top 25 nodes based on the “betweenness”
measure of centrality (since it indicates the extent of a
node's influence on the interactions of other nodes
within the network) including the microbes, pathways,
and genes contributing towards ASD.

2.6. Predictive Modeling using Machine Learning
(ML) algorithms

Based on the LEfSE analysis and correlation analysis,
two distinct datasets were compiled based on taxonomic
classification data (Top microbes) and functional

profiling data (top pathways and top genes) for

developing a predictive model for ASD. Subsequently,
missing values were addressed by removing them to
uphold data integrity. Standardization of datasets was
then carried out using the 'StandardScaler' from the
'sklearn.preprocessing' package to ensure uniform
scaling across all variables and mitigate bias towards
larger range variables. Skewness assessment and
normalization were performed using the
'PowerTransformer’ with the Yeo-Johnson method.
Various classification models, namely Random Forest,
Gradient Boosting, AdaBoost, K-Nearest Neighbors,
Support Vector Machine, Decision Tree, Logistic
Regression, and Gaussian Naive Bayes, were employed
to explore the relationship between features and ASD.
These models, sourced from the 'sklearn.ensemble’,
'sklearn.neighbors’, 'sklearn.svm', 'sklearn.tree’, and
'sklearn.linear_model' packages in scikit-learn library,
were evaluated using metrics such as accuracy,
precision, F1 score, recall, and confusion matrix.
Evaluation results identified the Gaussian Naive Bayes
model as most suitable for the combined dataset of “Top
pathways and Top genes”, while logistic regression
emerged as the preferred model for the “Top microbes”
dataset. Further analysis involved the use of a random
forest classifier to determine feature importance,
selecting the top three features in each case.

Visualization techniques including heatmaps and bar

graphs, facilitated by the 'seaborn' and
'matplotlib.pyplot' packages, were employed to present
the findings.

3.Results

3.1. Dataretrieval

As shown in Table 1, samples from two publicly
available studies were taken into consideration for this
investigation. Two subcategories were created from the

samples: Control and Autistic.

Title

Publication

A preliminary investigation on therelationship between gut

PRJNAS815491 microbiome and gene expressions in peripheral mononuclear cells | https://doi.org/10.1080/09168451.2016.1222267
of infants with autism spectrum disorders
PRINAG42975 Altered Gut Microbiota in

Chinese Children with Autism Spectrum

https://doi.org/10.3389/fcimb.2019.00040
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Figure 1.  Sample Categorization based on Disease Condition
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Fig.1 - Depicts the sample distribution

for each of the subcategories.
3.2. 16SrRNA data bioinformatics analysis

The microbial, pathway, and gene abundances of the gut
microbiome were revealed by taxonomic classification
and functional profiling using Parallel-Meta 3 for both
the control and autistic disorder conditions was obtained
through. A total of 38 genera were found in our samples.
When microbial abundances were compared between
Control vs Autistic samples, an increase in microbial
abundances including Blautia, Bacteroides,
Ruminococcus, Faecalibacterium, Lachnospiraceae,
Prevotella, Subdoligranulum and others, were found to

be more abundant in autistic samples was noted in
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autistic circumstances, indicating instability in the gut
milieu.

Similarly, a total of 48 pathways were identified in our
samples. The most abundant pathways observed in both
conditions - control and autistic — were genetic
information processing, signaling and cellular
processes, carbohydrate metabolism, amino acid
metabolism, membrane transport, translation,
replication and repair, aging, excretory system,
circulatory system, and others. In comparison, the
relative abundances of implicated pathways were higher
in the autistic condition vs the control condition.
Furthermore, a total of 7695 genes were identified in our
samples, among which we used the top 50 genes for
further analysis. The most abundant genes observed in
both conditions - control and autistic — were the K03088
(rpoE) gene, K02004 (ABC.CD.P) gene, K01990 (ABC-
2.4), and others. In comparison, the relative abundances
of implicated genes were higher in the Control vs
Autistic condition. The comparison of relative

abundances for both taxonomic and functional profiling

across Control vs Autistic disease conditions has been

depicted in Figure 2 (a) and (b).

Figure 2. Bar plots representing normalized abundances of the different (a) microorganisms and

(b) pathways identified in gut microbiome samples across control and autistic disease conditions.
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3.3.

Based on the taxonomic classification of the gut
microbiome samples (Shannon and Simpson indices),
Figure 3(a) shows the alpha diversity of those samples.
According to the disease condition, the control condition

had the lowest alpha diversity, and the autistic condition
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The beta diversity analysis demonstrated by PCoA plots
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had the greatest variability. The alpha diversity of gut

diversity and autistics the most.

microbiome samples according to functional profiling
(Shannon and Simpson indices) is shown in Figure 3(b)
and 3(c) for pathways and genes respectively. According

to the state of the disease, controls had the lowest alpha
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Figure 3. Alpha diversity of the gut microbiome samples using three independent metrics -
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(a) taxonomic classification profile, (b) expression pathway, and (c) functional profiling across different disease conditions
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individual groupings. Likewise, considerable

of gut sample taxonomic profiles (Figure 4(a)) showed

considerable differences between control and autistic
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Figure 4. Beta-Diversity using (a) taxonomic classification of gut microbiome samples illustrating PCoA
analysis for every microorganism and substantially differing microorganisms; and Beta-Diversity
based on functional profiling of gut microbiome samples illustrating (b) PCoA analysis for every pathway

and substantially differing pathways, and (c) PCoA analysis for every genes and substantially differing genes
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substantial effects of disease condition on the functional
profile of the samples. Figures 5 (b) and (c) show the
impact of every pathway and gene respectively on the
total gut microbiome of samples according to disorder
state.

3.6. LEfSE and T-test analysis

Based on their LDA scores across various disease
conditions, microbial, pathway, and gene biomarkers
were identified by LEfSE analysis following data
scaling and normalization. Five major genera, three
major pathways, and seven major genes were found as
biomarkers. Similar to this, the T-test identified
significant biomarkers for various disease conditions
based on their adjusted p-values and effect size values.
Figure 6 shows the significant microbiological and
functional biomarkers found using LEfSE and T-test
analysis across control and autistic disease conditions.
3.7. Systems biology approach to construct network

analysis

R2-Values of Microbes atter PERMANOVA Analysis

"y

ey of Ganes after SERLANCVA Anayys

(b) —

We analyzed interactions among microbes, pathways,
and genes using Cytoscape 3.10.0 (Figure 7). Nodes
represented microbes and pathways, while edges
depicted their interactions. Color coding (red for
microbes, green for pathways, and pink for genes) aided
visualization. The node size reflected relative
abundance, and the color gradient indicated interaction
strength. Our findings revealed complex relationships,
highlighting the interconnectedness and functional
significance of biological components.

We integrated the above-mentioned co-occurrence
abundance networks, resulting in a merged network
(Figure 8) that provided a more comprehensive view of
their interactions.

Subsequently, we subjected the merged network to
analysis using CytoHubba to identify the top 25 nodes
based on betweenness centrality. Interestingly, among
these top nodes, only one represented a gene (K06147),

while 18 nodes represented pathways and 6 represented

A2 Veles of Pafinrays sfier PERMANDVA Ansiysis

Figure 5. (a) Deviations identified of every microorganism comprising the gut microbiome
samples based on their taxonomic classification across different disease conditions,
(b) Deviations identified of every pathway comprising the gut microbiome samples; and (c) Deviations identified of every
gene comprising the gut microbiome samples based on their functional profiling across different disease conditions
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ib)

T

Figure 6. Important (a) microbial, (b) pathway, and (c) gene biomarkers discovered across different disease condition
using LEfSE results based on LDA scores; and Important (d) microbial, (e) pathway, and (f) gene biomarkers
discovered across different disease condition using T-test analysis based on p-values and effect size

Figure 7. Co-occurrence abundance network representing (a) Microbe-Microbe interactions,
(b) Pathway-Pathway interactions, (c) Genes-Genes interactions, (d) Microbe-Pathway interactions,
(e) Microbes-Genes interactions, and (f) Pathways-Genes interactions
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Figure 8. PATHWAYS

Integrated SB-ML approach

Figure 8. Merged network of co-occurrence abundance networks of microbes, pathways,
and genes with reduced microbial diversity

Figure 9. Topological analysis of merged biological network using CytoHubba demonstrating the
top 25 features which include 6 microbes, 18 pathways, and 1 gene

microbes as can be visualized in Figure 9.

3.8. Important feature determination using
Machine Learning (ML)

The combined dataset of top pathways and top genes
yielded the greatest results with Gradient Boosting,
Decision Tree, and Gaussian Naive Bayes achieving the
highest accuracy of 0.91 each. The feature importance
analysis of this dataset revealed that the top three
influential pathways are the Substance dependence
pathway, Circulatory system pathway, and Parasitic
infectious disease pathway. Similarly, the top 3 gene
features included the K02014 (TC.FEV.OM) gene, the
K03585 (acrA) gene, and the K06147 (ABCB-BAC)

gene.
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Similarly, the models trained using the dataset including
the most significant microbes had favorable outcomes,
with Gaussian Naive Bayes achieving the highest
accuracy rate of 0.91. Feature importance for the top
microbes dataset showed that the top 3 microbial
features included Sutterella, Prevotella, and Blautia.
The ROC curves, Correlation matrices, and the top
important features identified have been depicted in
Figure 10.

4. Discussion

In our investigation based on 16s rRNA analysis, 38
microbial taxa with variable abundance in autistic
individuals were found; many of which have been linked

to ASD pathogenicity in the past. Additionally, we
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Figure 10. (a) ROC-curve for the model trained on functional profiling data (Pathway and genes combined)
(b)ROC-curve for the model trained on taxonomic classification data (Microbes only)
(¢) Correlation matrix for top pathways and top genes,
and (d) Correlation matrix for top microbial features; Feature importance for
(e) pathways and genes, and (f) microbes depicting the importance of each in ASD in the decreasing order

identified 48 pathways and 7695 genes linked to ASD.
Alpha diversity, assessed using the Shannon and
Simpson indices, indicated higher diversity within the
autistic group, demonstrating higher within-group
diversity in the autistic condition compared to the
control, with a higher number of outliers in the autistic

group. Beta diversity of samples visualized using PCoA

DOI : https:doi.org/10.51248/v44i2.01

plots depicted data points in the form of 2D
representation based on distance matrix wherein the data
points more similar to each other tend to cluster together.
The beta diversity analysis revealed significant
differences between the two subcategories, with the
control community showing more variation compared to
autistic group. Additionally, the PERMANOVA
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variance analysis revealed that the S24 7 group of
microbes had the highest variance, followed by
Sutterella and Prevotella. Similarly, among pathways,
the circulatory system exhibited the highest variance,
followed by substance dependence pathways.
Regarding genes, the K02014 and KO03585 genes
showed the highest variance. Research has revealed that
critical microbes such as those belonging to the S24 7
family, can cause significant differences between the gut
microbial profiles between ASD and Control cases by
associating with chemokine disorders (serum levels of
MCP-3, MIP-1a, eotaxin, and RANTES) (10). These
changes might impact the gut-brain axis, which could
affect behavior and neurodevelopment. Moreover, the
S§24-7 group may affect metabolite production that
interacts with the immunological and neurological
systems of the host, causing systemic inflammation and
gastrointestinal symptoms associated with autism
spectrum disorders (11-12). Additionally, ASD patients
exhibit elevated levels of Sutterella, which showed high
variance across the two groups in our study, consistent
with previous reports (13), potentially inducing pro-
inflammatory responses and intestinal permeability,
leading to systemic inflammation and
neuroinflammation (14). This overgrowth may affect
immunological responses, neurodevelopment, and
neurotransmitter synthesis, influencing the microbiome-
gut-brain axis and contributing to the pathophysiology
of the disorder (15). Interestingly, Prevotella dysbiosis
in ASD has shown conflicting findings, with some
studies reporting decreased abundances (16) and others,
including our study, reporting increased levels (17).
Prevotella's involvement in intestinal fermentation and
carbohydrate metabolism suggests its potential role in
ASD-related neurobehavioral phenotypes, affecting
metabolic processes, nutrition intake, and microbial
metabolite synthesis (18). Prevotella overgrowth may
also contribute to immunological dysregulation,
systemic inflammation, changes in immune function

(19), and gastrointestinal disorders associated with ASD

(18).
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Additionally, the dysfunction of the Circulatory
system pathway (which showed highest variance)
observed in ASD may lead to cerebral hypoperfusion
and oxygenation deficits, affecting brain regions crucial
for language processing and social cognition (22).
Similarly, the substance dependence pathway involves
neurotransmitter systems such as glutamate, serotonin,
and dopamine, which play crucial roles in mood,
behavior, and cognition - all significant features of ASD
(20). Environmental factors like maternal substance use
during pregnancy have been associated with increased
ASD risk, possibly influencing fetal neurodevelopment
or epigenetic pathways (21). Additionally, comorbid
mental health conditions like anxiety and attention-
deficit hyperactivity disorder (ADHD) often co-occur
with ASD, potentially sharing neurobiological
mechanisms leading to substance abuse.

Furthermore, the K02014 (TC.FEV.OM) gene
(highest variance), encoding an outer membrane
receptor protein for iron complexes, may play a role in
iron uptake, transport, and utilization. Although the
precise relationship between this gene and ASD is
unknown, dysregulated iron homeostasis may affect
neurodevelopmental processes and add to the
pathogenesis of the disorder (23). Similarly, the K03585
(acrA) gene encodes for the membrane fusion protein in
a multidrug efflux system. Compounds such as immune
mediators, neurotransmitters, and signaling molecules
are regulated by multidrug efflux systems as they
traverse cell membranes. Multidrug efflux system
dysfunction may impact immunological responses,
which in turn may contribute to the inflammatory
processes seen in ASD pathology, as well as
neurotransmitter homeostasis, which has been linked to
ASD (24). Additionally, the blood-brain barrier's (BBB)
integrity is preserved in part by multidrug efflux
mechanisms. The integrity of the blood-brain barrier
may be jeopardized by impaired multidrug efflux system
activity, which could result in increased permeability
and possibly neuroinflammation linked to ASD (24).

Lastly, Machine Learning (ML) was employed to
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find the important features related to ASD. The results
indicated nine significant features namely Sutterella,
Prevotella, Blautia, Substance dependence pathway,
Circulatory system pathway, Parasitic infectious
disease, K02014 (TC.FEV.OM) gene, K03585 (acrA)
gene, and K06147 (ABCB-BAC) gene.

Interestingly, GM of children with ASD was found
to include lower levels of Blautia in certain studies (25).
Contrasting to this, our findings showed an increased
abundance of Blautia in ASD individuals compared to
control. It is known that Blautia ferments dietary fiber to
create short-chain fatty acids (SCFAs) (26). SCFAs —
particularly butyrate — have been linked to immune
system regulation, gut barrier integrity maintenance, and
altered neural development and function. Modulation of
SCFA synthesis by Blautia may be a factor in
immunological dysregulation, gastrointestinal
dysregulation, and neurodevelopmental problems
linked to ASD (26). Similar to Prevotella, Blautia is also
involved in carbohydrate metabolism and energy
production in the gut, affiliating it with ASD (18).
Parasitic infections, especially during pregnancy or
early childhood have been implicated in immune-
mediated pathways disrupting neurodevelopment,
possibly exacerbating ASD pathology (27).
Furthermore, the K06147 (ABCB-BAC) gene encodes
for ATP-binding cassette (ABC) transporter, and
functions similarly to multidrug efflux systems, except
that it needs ATP (adenosine triphosphate) as energy to
carry out the transport. The nervous system has ABC
transporters, which are involved in the movement of
chemicals necessary for the growth and operation of
neurons. ASD may be exacerbated by disruptions in
these mechanisms (28). The relation of Sutterella,
Prevotella, Substance dependence pathway, Circulatory
system pathway, K02014 (TC.FEV.OM) gene and
K03585 (acrA) gene with autism has already been
discussed.
With this, it can be clearly demonstrated that the features
namely — Sutterella, Prevotella, Substance dependence

pathway, Circulatory system pathway, K02014
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(TC.FEV.OM) gene and K03585 (acrA) gene have the
highest statistical proof with the combined approach of
PERMANOVA analysis, network analysis and

predictive modeling analysis.

5.

Our research contributes to the expanding corpus of

Conclusion

research linking the gut microbiome to the
pathophysiology of ASD and offers insightful
information about possible biomarkers and treatment
targets for the condition. Our results can potentially
guide the development of tailored therapies targeting the
gut microbiome in the management of ASD by
clarifying the intricate relationship between microbial
dysbiosis, metabolic pathways, and ASD pathogenesis.
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Figure Legends

Figure 1. Gut microbiome sample distribution based on
disease condition into Control (n =47) and Autistic (n =
51) samples respectively.

Figure 2. Bar plots representing normalized abundances
of the different (a) microorganisms and (b) pathways
identified in gut microbiome samples across control and
autistic disease conditions.

Figure 3. Alpha diversity of the gut microbiome samples
using three independent metrics - (a) taxonomic
classification profile, (b) expression pathway, and (c)
functional profiling across different disease conditions
Figure 4. Beta-Diversity using (a) taxonomic
classification of gut microbiome samples illustrating
PCoA analysis for every microorganism and
substantially differing microorganisms; and Beta-
Diversity based on functional profiling of gut
microbiome samples illustrating (b) PCoA analysis for
every pathway and substantially differing pathways, and
(c) PCoA analysis for every genes and substantially
differing genes

Figure 5. (a) Deviations identified of every
microorganism comprising the gut microbiome samples
based on their taxonomic classification across different
disease conditions, (b) Deviations identified of every
pathway comprising the gut microbiome samples; and
(c) Deviations identified of every gene comprising the
gut microbiome samples based on their functional
profiling across different disease conditions

Figure 6. Important (a) microbial, (b) pathway, and (c)
gene biomarkers discovered across different disease
conditions using LEfSE results based on LDA scores;
and Important (d) microbial, (e) pathway, and (f) gene
biomarkers discovered across different disease
condition using T-test analysis based on p-values and
effectsize

Figure 7. Co-occurrence abundance network

representing (a) Microbe-Microbe interactions, (b)
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Pathway-Pathway interactions, (c) Genes-Genes
interactions, (d) Microbe-Pathway interactions, (e)
Microbes-Genes interactions, and (f) Pathways-Genes
interactions

Figure 8. Merged network of co-occurrence abundance
networks of microbes, pathways, and genes with
reduced microbial diversity

Figure 9. Topological analysis of merged biological
network using CytoHubba demonstrating the top 25
features which include 6 microbes, 18 pathways, and 1
gene

Figure 10. (a) ROC-curve for the model trained on
functional profiling data (Pathway and genes combined)
(b)ROC-curve for the model trained on taxonomic
classification data (Microbes only) (c) Correlation
matrix for top pathways and top genes, and (d)
Correlation matrix for top microbial features; Feature
importance for (¢) pathways and genes, and (f) microbes
depicting the importance of each in ASD in the
decreasing order

Table Legends

Table 1. Details of the data utilized in our study.
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