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ABSTRACT 
 

Introduction and Aim: Diabetic foot ulcers (DFUs) are a common and debilitating diabetic consequence leading 

to lower-limb amputations, long-term disability, and reduced lifespan. Hence, the current research aims to find out 

how differently expressed genes (DEGs) affect the DFU.  
 

Materials and Methods: Bioinformatics analysis was used to evaluate DEGs using the GSE132187 dataset of the 

NCBI-GEO database, which contained samples from three hyperglycemic and three normoglycemic macrophage-

like cell lines. Gene Ontology (GO) and KEGG pathway enrichment analysis was used to study how genes are 

classified into preset bins based on their functional properties after DEGs were discovered. A network of protein-

protein interaction (PPI) was created and five topological characteristics such as degree, stress, closeness centrality, 

betweenness centrality, and radiality were evaluated to uncover hub DEGs in DFU.  
 

Results: We found 547 DEGs using the GSE132187 dataset, comprising 79 upregulated DEGs and 468 

downregulated DEGs. In total, the PPI network included 434 nodes and 1724 edges. The giant network uncovered 

six modules that are significantly enriched in biological processes like regulation of positive JNK cascade, positive 

interferon-gamma production and negative cell proliferation, cellular response to zinc ion and lipopolysaccharide, 

wound healing, and inflammatory response.  
 

Conclusion: Bioinformatics analysis revealed the major differentially expressed hub-genes implicated in DFUs. 

These findings suggest that these genes could be exploited as DFU prognostic, diagnostic, or therapeutic targets. 
 

Keywords: Bioinformatics analysis; diabetic foot ulcer; differentially expressed genes; inflammatory molecules.  
 

INTRODUCTION 

iabetes mellitus (DM) is a long-term endocrine 

disease characterized by hyperglycemia and 

abnormally high glucose levels. The core 

causes of DM are a lack of insulin secretion, changed 

insulin levels, and beta-cell death, which leads to a 

metabolic imbalance (1). Adults with diabetes account 

for around 537 million worldwide and is more 

common in the middle-aged and older population (2). 

The most life-threatening diabetes complication is the 

diabetic foot ulcer (DFU), which affects 15-25 % of 

diabetics and by raising morbidity and hospitalization 

rates, DFUs inflict a huge burden on society and 

families (3). Diabetics are more prone to develop 

macro and microvascular complications, decreased 

angiogenesis, infection, extracellular matrix changes, 

nephropathy and neuropathy (4, 5). The bulk of them 

are typically detected in DFUs, although it's unclear 

whether they have a causal or consequential role in 

healing impairment. A good comprehension of the 

etiologies and molecular basis of DFU is designed to 

establish more therapeutically effective medicines (6). 

However, these studies simply focus on one chemical, 

gene, or pathway but, some proteins, for example may 

interact with other proteins and hence play an 

important part in the DFU (7).  
 
Recently, genome-wide technologies followed by 

network biology and bioinformatics approaches have 

been employed for DFU to find the key genes that 

could be targeted as predictive or diagnostic 

indicators, as well as therapeutics. The analysis of 

primary gene products has also been investigated as a 

diagnostic and screening tool for disease detection, 

using network-based approaches to unravel the 

molecular structure and function of complex 

biological pathways. Such approaches try to 

investigate all gene products at the same time in order 

to gain a better knowledge of disease causes and 

discover effective intervention targets. As a result, in 

the current research we downloaded an original 

microarray dataset GSE132187 and analyzed it to find 

DEGs between macrophage-like cell lines in 

hyperglycemic and normoglycemic conditions. To 

discover the specific genes and its existing biological 

mechanisms, development processes, and to evaluate 

the network of protein-protein interactions (PPI), we 

employed Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 
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analysis. Overall, integrated bioinformatics techniques 

were used to detect appropriate inflammatory signals 

in DFUs, which would identify potential biomarkers 

for diagnosis and also help to develop targeted 

therapeutics. 
 
MATERIALS AND METHODS 
 
Microarray dataset 

The Gene Expression Omnibus (GEO) repository 

(http://www.ncbi.nlm.nih.gov/geo) gathers and 

disseminates high-throughput genome-based data 

obtained by microarrays, next-generation sequencing 

(NGS), and other methods (8). We extracted the gene 

expression dataset #GSE132187, which was run on the 

Affymetrix U133 Plus 2.0 Array platform 

#GPL26734. The probes in the platform were 

transformed into suitable gene codes based on the 

annotation knowledge. Three macrophage-like cell 

lines housed in hyperglycemic settings and three 

macrophage-like cell lines kept in normoglycemic 

conditions were included from the GSE132187 data 

set. 

 

Differentially Expressed Genes (DEGs) 

identification 

The GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r)  

tool was used to detect the differentially expressed 

genes (DEGs) using a |logFC| of at least 1 and a 

p<0.05. The DAVID program was used to transform 

the differential gene original codes filtered and 

processed by GEO2R into an official gene symbol (9).  
 
Gene ontology and KEGG pathway enrichment 

analysis 

A large set of genes collected from previous genetic 

studies were investigated using the tool DAVID, 

(Database for annotation, visualization, and integrated 

Discovery(https://david.ncifcrf.gov/summary.jsp) (10). 

The GO (http://www.geneontology.org/) creates 

vocabularies and categories that can be used to 

annotate genes, gene products, and sequences (11). 

Based on the molecular, chemical and systemic 

functions, the KEGG (http://www.genome.jp/kegg/) 

develops biological science (12). All DEGs were 

analyzed for functional and pathway enrichment by 

DAVID software. For the screening of prominent GO 

keywords and KEGG pathways, a statistically 

significant difference was defined as< 0.05. 
 

Construction of PPI network and module analysis 

Online databases that search for interacting genes, 

such as STRING (http://string-db.org) (v11.0), are 

used to predict PPI networks (13). The study of 

protein functional interactions may uncover the 

mechanisms that underlying disease initiation and 

progression. In the current research, the PPI structure 

of candidate genes was built with a confidence level 

score of >0.4. Cytoscape is a bioinformatics software 

platform for testing interactive cellular networks 

(v3.3.0) (14). MCODE (Molecular Complex 

Detection) (v1.3.2) is a Cytoscape plug-in that cluster 

networks as per morphology in attempt to discover 

fully connected parts (15). The PPI network is 

depicted in Cytoscape, whereas MCODE indicates the 

most essential module. The selection criteria were 

MCODE scores >5, node score cut-off = 0.2, max 

depth = 100, and k-score =4. The Cytoscape plug-in 

Network Analyzer is used to do a topological analysis 

of the interaction network. 
 
Selection of Hub-genes  

CytoHubba, one of the Cytoscape plugin was used to 

select the top hub-genes in the PPI network. We used 

five methods to select the five most common genes: 

degree, stress, closeness centrality, betweenness 

centrality, and radiality (16). 
 
RESULTS   
 

Identification of DEGs 

Using the aforementioned cutoff (|logFC| 2 and 

p<0:05), 547 DEGs (79 up regulated and 468 down 

regulated) were screened from the GSE132187 dataset 

with GEO2R analysis (Fig.1a-c). The network's 

shortest paths will connect two randomly selected 

nodes, and the distribution of shortest path length, 

betweenness centrality, closeness centrality, degree, 

average clustering coefficient, topological coefficient, 

and average neighborhood connectivity of network 

nodes was plotted using histograms (Fig.2a-h). The 

top-five overlapping genes were picked based on the 

five classification strategies in cytoHubba and found 

to belong to the down regulated DEGs network (Fig.3 

and Table 1).  
 
GO and KEGG pathway enrichment analysis of 

downregulated DEGs  

According to the GO Enrichment analysis, the down 

regulated DEGs were substantially more abundant in 

biological processes (BP) such as keratinocyte 

migration, replicative cell ageing, positive control of 

fever creation, isocitrate metabolic process, 

interleukin-1 beta production, and neutrophil 

homeostasis. For the cell component (CC), DEGs were 

discovered in the mitochondrial respiratory chain 

complex I, peroxisome, mitochondrial large ribosomal 

subunit, intermediate filament cytoskeleton, and the 

lysosomal membrane's luminal side. The down 

regulated DEGs were involved in the molecular 

functions (MF) such as NADPH binding receptor 

agonist activity, CXCR chemokine receptor and 

cofactor binding, oxidoreductase activity, action on 

CH-OH group of donors, NAD or NADP as acceptor 

1-phosphatidylinositol binding, isocitrate 

dehydrogenase (NADP+) activity, and pyruvate 

dehydrogenase activity. According to the KEGG 

pathway enrichment analysis, the DEGs were richly 

associated with glutathione metabolism, complement 

and coagulation cascades, hematopoietic cell lineage 

and inflammatory bowel disease.  
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Fig. 1: Core network or giant network (a), up regulated (b), and down regulated  

                    (c) DEGs obtained from GEO2R analysis 

 

 

Table 1: Top five hub-genes scores for degree, betweenness centrality, and closeness centrality  
Gene ID Gene name Degree BC CC 

IL6 Interleukin-6 77 0.111629 0.411206 

TNF Tumor necrosis factor 73 0.124314 0.411206 

HRAS H Ras Protein 57 0.146357 0.411597 

FGF2 Fibroblast growth factor-2 41 0.04635 0.371674 

IL1B Interleukin 1 beta 39 0.014306 0.36204 
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    Fig. 2: Essential genes in diabetic foot ulcers: a topological analysis of PPI network. a) The histogram depicts 

the shortest path length distribution, which shows the small-world property of the network (a), number of 

shared neighbors (b), betweenness centrality (c), closeness centrality (d), average clustering coefficient of 

network nodes (e), average neighborhood connectivity of network nodes (f), degree distribution of network 

nodes (g) and topological coefficient of network nodes (h). 

 

 

 

 

716



Shwetha et al: Molecular signatures in diabetic foot ulcer by integrated gene expression profiling via bioinformatic analysis 

DOI: https://doi.org/10.51248/.v42i4.1798                                                                                Biomedicine- Vol. 42 No. 4: 2022 

 
Fig.3: Five hub-genes were identified by overlapping the five classification methods  

                         like degree, stress, betweenness centrality, closeness centrality and radiality of cytoHubba. 

 

 
Fig. 4: Cytoscape showing the gene modules and unclustered genes. Genes belonging to each module  

         are highlighted in distinct colours for each distribution. The grey-coloured genes are unclustered 

 

PPI network development and module analysis 

 

After hiding nodes that couldn't communicate with 

other nodes, the PPI network had 434 nodes and 1724 

edges. We then created a total of six modules using 

MCODE to perform K kernel analysis on the string 

network (Table 2 and Fig.4). The DEGs from this 

huge network were clustered into six modules M1-

M6. In the BP, chemokine-mediated signalling 

pathway, inflammatory and immune mechanisms and 

were all highly enriched in DEGs for the Module 1 

(M1). Modules for the CC, DEGs were identified at 

high amounts in the plasma membrane, extracellular 

space, and mitochondrial inner membrane. DEGs 

were predominant in chemokine receptor binding, 

Binding of the CCR1 chemokine receptor, cytokine 

activity, and CXCR chemokine receptor binding in 

terms of MF. It was mostly related with cytokine-

cytokine receptor interaction in the KEGG pathway 

study biological processes like such as positive 

modulation of interleukin-6 production, positive 

management of interferon-gamma production, 

inflammatory response, and cellular response to 

tumour necrosis factor are enriched in Module 4 (M4). 

DEGs for the cell component were most likely located 

in the transcription factor complex, nucleolus, and 

extracellular space. DEGs were involved in cytokine 

activity, action of growth factors and interleukin-6 
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receptor binding when it came to MF. In the KEGG 

pathway research, it was strongly connected to the 

TNF signalling pathway. Biological processes such as 

mitochondrial translational termination, mitochondrial 

translational elongation, translation, and positive 

control of endothelial cell proliferation were 

considerably enriched in Module 6 (M6). Significant 

results were not seen by CC and MF. However, in 

module 6 there is no specific KEGG pathway. 

Similarly, in module 2, 3 and 5 GO function 

enrichment and specific KEGG pathways are not seen. 
 
DISCUSSION   
 
The low levels of TNFα cytokine is known to promote 

inflammation but it inhibits the formation of 

extracellular matrix at high levels (17). In addition, it 

can stimulate the acute-phase response, operate as a 

powerful neutrophil chemo-attractant and stimulate 

the macrophage activation when combined with IL1β 

and IL6. TNFα is always increased in diabetics with 

acute hyperglycemia, adding to the general chronic 

inflammatory status seen in this condition. In 

hyperglycemia condition, IL6 concentration was 

found to be increased in macrophages of normal mice, 

streptozotocin-injected and db/db mice (18). The lack 

of IL6 receptor's α -subunit leads to impaired 

infiltration of macrophages and also delay in wound 

healing was observed in a mice study (19). The 

circulatory levels of acute-inflammatory responsive 

proteins and IL6 were considerably higher in diabetics 

with foot ulcers, compared to who did not have foot 

ulcers (20). Circulating monocytes and tissue 

macrophages produce IL1β, an essential inflammatory 

molecule for the activated caspase-1 cleavage in the 

lysosome. By forcing the NALP3 inflammasome to 

assemble, IL-1β can increase its own secretion. IL-1 

levels are higher in DFU patients, but they decrease 

when the ulcers heal (21). Topical IL-1 therapy was 

linked to higher CXCR2 expression which results in 

delayed wound healing in skin explants. The 

macrophages isolated from wounds of diabetics and 

db/db mice show elevated IL1β and components of 

NALP3 inflammasome, and blocking the 

inflammasome activation indicated the better healing 

in 10 days of recovery period (22).  

 

Signals from outside the cell are sent to the cell's 

nucleus via signal transduction, which is carried out 

by the HRas protein. This signal promotes cell growth 

and division. The HRas protein, which also functions 

as a GTPase, converts a chemical called GTP to GDP. 

The HRAS gene, which was discovered in this study, 

had never been linked to DFUs before. As a result, 

confirming the functional importance and molecular 

roles of these genes in the DFU network is vital. In a 

few of studies, the hyperglycemia and the deposition 

of advanced glycation end products at the wound site 

have been related to tissue repair in diabetic skin (23). 

In addition, the local degradation of FGF2 and/or 

absorption into excipients, causing it to lose its 

effectiveness, hence incorporation it into medicated 

gels might have major influence on wound healing. 

The FGF2 integrated chitosan hydrogel application to 

wounds in db/db mice showed that there is lot of 

tissue granulation, capillary growth, and formation of 

epithelium (24).  

 

Table 2: DEGs associated with each cluster and their MCODE scores 
Modules Nodes Edge MCODE Score Gene IDs 

M1 36 197 11.257 UQCR10, PLAUR, NDUFB1, PLAU, ATP5L, NDUFB11, VAMP8, 

CCL5, CD33, CXCL1, NDUFB7, CCL4, CXCL2, ATP5F1, CYBB, 

CX3CR1, GPR18, COX6B1, CD36, IL1A, CCL19, CSF2, CXCL3, 

UQCRQ, RAP2C, NDUFA6, NDUFB2, CD59, NDUFA11, GT, 

LAIR1, CD300A, GAA, IL1B, ITGAL, HVCN1 

M2 7 21 7.000 FBXO41, HERC4, ASB13, UBE2O, RNF7, UBE2D4, ANAPC13 

M3 16 52 6.933 IDH1, IDH2, LDHB, MDH1, MDH2, MRPL48, MRPL55, 

MRPS23, PDHA1, PDHB, PFKP, RPL3, RPS14, RPS20, 

SUCLG1TKT 

M4 24 75 6.522 GM2A, CREG1, MRPS9, NHLRC3, IMPDH1, LIF, PARP1, 

C3AR1, XIAP, MAP3K5, PYCARD, AGA, HRAS, IL6, PEBP1, 

TNF, GUSB, THBD, HBEGF, CTSA, ITPKB, MRPL40, CLEC7A, 

SMAD7 

M5 5 10 5.000 MT1G, MT1F, MT1X, MT1E, SLC30A1 

M6 16 30 4.000 HSPA8, PACSIN2, SECISBP2, ANG, MRPL24, VEGFC, RPL14, 

FGF2, NHP2, SYNJ2, TIMP3, MMP7, MRPL12, MRPL17, SNX9, 

WNT5A 
 
Additionally, topical use of a mixture of aloe vera gel 

and ryegrass hydroalcoholic extract shortened the 

inflammatory phase by boosting FGF-2 and also 

accelerated the healing of diabetic open wounds by 

elevating cell viability and collagen deposition (25). 
 

To summarize, employing genomics to anticipate 

possible targeted therapy targets in diseases is a 

successful clinical research strategy, despite some 

drawbacks. A public dataset from GEO was used to 

look into the possible diagnosis and treatment targets 

of DFU. Current estimates of possible prophylactic 
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and treatment targets must be confirmed using 

experimental methodologies in cell and animal models 

prior to clinical trials.  
 
CONCLUSION 
 
Overall, our bioinformatics network analysis of hub 

genes indicates that TNFα, IL6, IL1β, FGF2, and 

HRAS as important hub-genes involved in DFU 

healing. However, these forecasts have to be 

confirmed with the biological investigations, but the 

key intriguing genes discovered could be helpful in 

gaining a better knowledge of wound recovery. 
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