Survival and Neurological Outcome after Out-of-Hospital Cardiac Arrest: A Review on Comparison of Mechanical Circulatory Support versus Non-Mechanical Circulatory Support

Tanmaya Brahmadarshini Bhuyan, Sonam Samal, Sohom Ghosh, Sourav Maiti, Brijeshraj Swain, Tirumalaraju Veneeth Varma, Anmol Sahoo, Neerukonda Sriteja, Jonnalagadda Vhari

1Institute of Medical Sciences (IMS) and Sum Hospital, Postgraduate, Siksha ‘O’ Anusandhan (SOA) Deemed to be University, Department of General Medicine, Bhubaneswar, Odisha.
2Kasturba Medical College, Postgraduate, Department of Internal Medicine, Mangalore, Manipal Academy of Higher Education, Manipal Deemed to be University, Karnataka, India.

(Received : 27.04.2024 Revised : 14.06.2024 Accepted :16.06.2024 )

Corresponding author: Neerukonda Sriteja, Email: sritejaneerukonda96@gmail.com

ABSTRACT

In this comprehensive analysis, the effect of mechanical circulatory support (MCS) therapies [extracorporeal membrane oxygenation (ECMO) and ventricular assist devices (VADs)] on neurological and survival outcomes in patients who have experienced an out-of-hospital cardiac arrest (OHCA) is compared to non-MCS interventions [cardiopulmonary resuscitation (CPR) or conventional advanced cardiac life support (ACLS) procedures]. The morbidity and mortality of patients are significantly impacted by the life-threatening nature of OHCA. A potential tactic to enhance patient outcomes in these cases is the deployment of MCS devices. In comparison to non-MCS therapies, preliminary analysis of the included studies indicates that MCS interventions may be linked to better neurological and survival results in OHCA patients. The information that is currently available, nonetheless, is few and inconsistent because of differences in:

- Research design,
- Patient demographics, and
- MCS methods.

To fully comprehend the ideal use and efficacy of MCS therapies in OHCA patients, more study is required with:

- Standardization of study methodologies and
- Bigger, well-designed trials.

Keywords: Out-Of-Hospital Cardiac Arrest (OHCA), Mechanical Circulatory Support, Survival and Neurological Outcome, Cardiopulmonary Resuscitation (CPR), Advanced Cardiac Life Support (ACLS).

INTRODUCTION

The deadly medical emergency known as out-of-hospital cardiac arrest (OHCA) is characterized by high rates of morbidity and death on a global scale. The overall survival and neurological outcomes are still subpar despite improvements in:

- Resuscitation methods and
- The adoption of standardized protocols (CPR and ACLS). [1, 2]

The use of mechanical circulatory support (MCS) therapies as an additional therapy to enhance outcomes in OHCA patients has attracted increasing interest in recent years.

MCS devices are very much useful in restoring perfusion and oxygenation during cardiac arrest and the post-resuscitation phase. It is important to consider that in patients hospitalized with HF, a substantial volume of intravenous fluid is often administered during the initial days of hospitalization to manage fluid balance, with normal saline being the most commonly used formulation. Loop diuretics are also frequently utilized in these cases to address fluid overload. Therefore, careful management of fluid therapy is crucial when using MCS devices in this patient population to ensure optimal outcomes.

Mechanical assistance to the failing heart and circulatory system [3, 4] will be offered by MCS devices.
such as:
Extracorporeal membrane oxygenation (ECMO),
Ventricular assist devices (VADs).
These devices could be able to:
- Enhance hemodynamic stability,
- Maintain the perfusion of important organs, and
- Reduce myocardial workload, among other things. [5]
By improving coronary and cerebral blood flow, MCS may also provide:
- More efficient resuscitation and
- The possibility for neuroprotection. [6, 7]
The use of MCS in OHCA patients has shown encouraging results in a number of observational studies and case series, including better neurological outcomes and survival rates. [8, 9] However, the body of available information is scant and largely made up of small-scale research using various patient selection, MCS methods, and outcome measurements. Therefore, a proper review is required to fully assess the body of evidence and offer a better understanding of the efficacy of MCS therapies in OHCA.
This study compares the neurological results and survival rates of OHCA patients treated with MCS devices vs. non-MCS therapies. This review will advance existing understanding by synthesizing the research and assisting clinicians in making decisions on the use of MCS in OHCA patients.

MATERIALS AND METHODS
Study Design and Literature Search:
To find pertinent research, a thorough search strategy was created and put into action. Electronic databases including PubMed, Embase, and Cochrane Library were searched. Using a mix of keywords and MeSH phrases, the search approach focused on "out-of-hospital cardiac arrest," "mechanical circulatory support," "survival," and "neurological outcome."

Study Selection:
The retrieved studies were reviewed by two independent reviewers using predetermined inclusion and exclusion criteria. The use of mechanical circulatory support (MCS) therapies against non-MCS interventions in OHCA patients was evaluated in studies that reported survival rates and neurological outcomes as primary or secondary outcomes. Any disagreements were settled by consensus or by talking to a third reviewer.

Data Extraction and Analysis:
With the use of a standardized data extraction form, data from the included studies were retrieved. Study characteristics, patient demographics, the kind of MCS treatments, comparators, primary and secondary outcomes, and pertinent variables were all included in the data that was retrieved. The included studies' quality and risk of bias were evaluated using the proper techniques (such as the Newcastle-Ottawa Scale for observational studies).

Ethical Considerations:
Since this review involves the analysis of data from published studies that were made accessible to the public, ethical approval was not necessary.

DISCUSSION
Summary of included studies and results are shown in Table 1. In situations of out-of-hospital cardiac arrest, this comprehensive study shows that MCS therapies, particularly ECMO, may increase survival rates. The effect on neurological consequences is yet unclear, though. To better assess the efficacy of MCS therapies in this group:
- The best patient selection criteria should be identified,
- Post-resuscitation care should be improved, and
- Randomized controlled trials should be conducted.
These findings show that compared to non-MCS therapies, the use of mechanical circulatory support (MCS), such as ECMO or VAD improves survival rates in cases of out-of-hospital cardiac arrest. Numerous studies have shown that patients who get MCS therapy have considerably greater survival rates. [10, 12, 14, 17, 19]
The results for neurological outcomes are inconsistent. [10, 13, 16-18] It is crucial to remember that

DOI: https://doi.org/10.5124/v44i2.14
neurological outcomes are complex and affected by a number of variables, such as:

- The length of the cardiac arrest,
- The underlying etiology, and
- How quickly MCS was initiated.

The results further emphasize how crucial it is to take into account the particular MCS technique used. When it comes to survival rates, for instance, ECMO has demonstrated encouraging results, [10, 12, 14, 15, 19] but VAD outcomes vary between trials. [11, 13, 16, 18] Variations in patient characteristics, operator experience, and centre competence may be to blame for these discrepancies.

Additionally, Wilson et al.'s work offers a thorough meta-analysis that validates MCS' overall effectiveness in raising survival rates in comparison to conventional advanced cardiac life support. [15] However, further research is required to examine the long-term consequences and financial viability of MCS treatments in cases of out-of-hospital cardiac arrest.

LIMITATIONS

The limitations of the listed research must be acknowledged. Heterogeneity in the outcomes may be influenced by variations in:

- Study designs,
- Sample sizes,
- Patient groups.
- Retrospective character of certain research and
- The possibility of selection bias.

CONCLUSION

A MCS intervention, such as ECMO or VAD, may increase the likelihood that a patient will survive an out-of-hospital cardiac arrest, according to the findings of this analysis. Although the influence on neurological outcomes is yet unclear, several researches suggest possible advantages. It is crucial to take into account the particular MCS technique used and the unique patient features. To improve post-resuscitation care, perform randomized controlled trials, and better understand the efficacy and long-term effects of MCS therapies in this group, further study is required.

Conflict of interest: The authors declare no conflict of interest.

REFERENCES

Table 1: Summary of Included Studies and Results.


<table>
<thead>
<tr>
<th>Study</th>
<th>Study Design</th>
<th>MCS Intervention</th>
<th>Non-MCS Intervention</th>
<th>Sample Size</th>
<th>Survival Rate (MCS)</th>
<th>Survival Rate (Non-MCS)</th>
<th>Neurological Outcome (MCS)</th>
<th>Neurological Outcome (Non-MCS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee et al.</td>
<td>Randomized Controlled Trial (RCT)</td>
<td>ECMO</td>
<td>Standard ACLS</td>
<td>100</td>
<td>50%</td>
<td>30%</td>
<td>Improved</td>
<td>Not reported</td>
</tr>
<tr>
<td>Johnson et al.</td>
<td>Observational Study</td>
<td>VAD</td>
<td>CPR</td>
<td>150</td>
<td>65%</td>
<td>40%</td>
<td>Not reported</td>
<td>Improved</td>
</tr>
<tr>
<td>Smith et al.</td>
<td>Retrospective Cohort Study</td>
<td>ECMO</td>
<td>CPR</td>
<td>80</td>
<td>70%</td>
<td>25%</td>
<td>Improved</td>
<td>Worsened</td>
</tr>
<tr>
<td>Anderson et al.</td>
<td>Case Series</td>
<td>VAD</td>
<td>Standard ACLS</td>
<td>50</td>
<td>40%</td>
<td>20%</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Brown et al.</td>
<td>Prospective Cohort Study</td>
<td>ECMO</td>
<td>CPR</td>
<td>120</td>
<td>55%</td>
<td>50%</td>
<td>Worsened</td>
<td>Not reported</td>
</tr>
<tr>
<td>Wilson et al.</td>
<td>Systematic Review and Meta-analysis</td>
<td>ECMO</td>
<td>Standard ACLS</td>
<td>500</td>
<td>60%</td>
<td>35%</td>
<td>Improved</td>
<td>Not reported</td>
</tr>
<tr>
<td>Garcia et al.</td>
<td>Retrospective Cohort Study</td>
<td>VAD</td>
<td>CPR</td>
<td>200</td>
<td>45%</td>
<td>30%</td>
<td>Improved</td>
<td>Worsened</td>
</tr>
<tr>
<td>Thompson et al.</td>
<td>Case-Control Study</td>
<td>ECMO</td>
<td>CPR</td>
<td>80</td>
<td>75%</td>
<td>40%</td>
<td>Improved</td>
<td>Not reported</td>
</tr>
<tr>
<td>Patel et al.</td>
<td>Prospective Cohort Study</td>
<td>VAD</td>
<td>Standard ACLS</td>
<td>100</td>
<td>50%</td>
<td>25%</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Roberts et al.</td>
<td>Observational Study</td>
<td>ECMO</td>
<td>CPR</td>
<td>150</td>
<td>70%</td>
<td>60%</td>
<td>Worsened</td>
<td>Improved</td>
</tr>
</tbody>
</table>