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ABSTRACT 
 

Introduction and Aim: In emerging respiratory disease pathogens, the Corona viruses have become the 

main pathogens of respiratory viral disease outbreaks. SARS-Cov-2 is a new virus that has been identified 

in human and this very contagious novel corona virus has spread globally within the short period of time. 

The biological concept of the synthetic peptide vaccine is based on the induction of immune cells response 

depends on the immune cell receptor specificity to verify a presented peptide epitope. The identification of 

these epitopes by experimental procedures are expensive and time- consuming. Therefore, the approach of 

reverse vaccinology came into view. The approach of reverse vaccinology involves molecular docking, 

prediction of epitope tools, and desired immunogenic peptides analysis of population coverage in terms 

of design. The primary goal of this present study is to identify the antigenic determinant which might be a 

potent candidate vaccine against SARS-CoV-2.  
 

Materials and Methods: The whole genome sequence of a contagious strain of SARS-CoV-2 retrieved 

from genomic database. The whole genome screened to identify the protein sequence which is antigenic, 

and the antigen determinant peptide predicted with different databases and Accessible Surface Area (ASA) 

calculation. The selection of peptide depends on the prediction of identified epitope carried out according 

to their predictive scores by almost all bioinformatic tools. 
 

Results: The identified antigenic determinant predicted to bind with MHC class I molecule using MHC 

binding prediction tools. In this study, the identified epitope is the best peptide having greater ASA value 

and binding with MHC class I molecule.  
 

Conclusion: As this peptide is immunogenic epitope it might be a potent candidate vaccine against COVID-

19 or SARS-CoV-2 virus.   
 

Keywords: Reverse vaccinology; synthetic peptide vaccine; SARS-CoV-2; COVID-19; epitope. 
 

 

INTRODUCTION 
 

Coronavirus disease 2019, which is the acronym of 

COVID-19, which has spread initially from China to 

several other countries around the world which is 

caused by SARS-CoV-2 is a new virus accountable 

for a scourge of respiratory disease (1). In humans, the 

virus's epitope binds to the angiotensin-converting 

enzyme 2 (ACE2) receptor, which is found in 

abundance in the kidney, endothelium, lung, and heart. 

On December 31, 2019, the WHO Office in China 

received the first reports of outbreak cases with 

symptoms consistent with unidentified low respiratory 

infections found in Wuhan, the largest city in China's 

Hubei province (2). 
 

There is no effective treatment available to treat 

COVID-19, which is caused by a new virus SARS-

Cov-2 that has recently appeared in humans and in 

terms of therapeutics there is no known effective 

pharmaceutical agent to avoid infection from the virus 

SARS-Cov-2(3). A 6- to 18-month timetable was set 

for achieving the target of a safe and effective vaccine. 

As a result of this unprecedented effort, over 200 

candidate vaccines are in various stages of growth, 

with over 50 in human clinical trials and 18 in efficacy 

testing (4). 

Conventional vaccinology approach was developed in 

1796 by Edward Jenner (5) and in 1880 the work of 

Louis Pasteur on chicken cholera opened the way to 

Conventional vaccinology approach in the laboratory 

(6). Since the time of vaccine developed by Louis 

Pasteur there have been 2 methods of vaccine 

development in Conventional vaccinology approach: 

attenuation and inactivation (7, 8). 
 

The major drawback of this method; the outcome of 

an attempted attenuation unpredictable and based on 

the nature of the attenuating mutation attenuated 

pathogen may revert to virulence (9,10). Other 

disadvantages of this strategy include the difficulty in 

producing adequate titer preparations, their high cost 

per dose, and existing criteria for multiple 

vaccinations (11). 
 

Progress in microbiology, genomics, synthetic 

biology, and biotechnology has provided a novel set of 

tools to approach modern-day vaccinology (12, 
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13). Since identifying epitopes experimentally is time-

consuming and expensive, the reverse vaccinology 

approach was developed. One of the most important 

steps in vaccine development is antigenic epitope 

prediction using computational methods (14). 
 

Pathogens have been dissected and the components 

useful for vaccine production identified using 

biochemical, serological, and microbiological 

approaches. While effective in many cases, this 

method is time-consuming and fails when pathogens 

cannot be cultured in vitro or when the most abundant 

antigens are sequenced in a variable manner. Without 

the need to grow the pathogen in vitro, Insilco 

genomic approaches now enable prediction of all 

antigens, regardless of their abundance or 

immunogenicity during infection, allowing vaccine 

production using non-conventional antigenic epitopes 

and exploiting non-conventional arms of the system. 

This novel process is named as Reverse Vaccinology 

since the method of vaccine discovery begins in silico 

using genetic information rather than the pathogen 

itself (15). 
 

Reverse vaccinology employs epitope prediction 

techniques, molecular docking, and population 

coverage analysis to create desired immunogenic 

peptides. The use of bioinformatics techniques aids 

computational biology in the design of in silico 

vaccines. Prediction of the epitope is critical, since it 

reduces both the cost and the need for experimental 

results (16,17). We proposed the present study to 

identify the antigenic determinant that could be used 

as a potent vaccine candidate against the SARS-Cov-

2 Virus. 
 

MATERIALS AND METHODS 
 

Selection and retrieval of sars-cov-2 genome 
 

To identify the SARS-CoV-2 virus pathogenic protein 

sequence for their antigenic properties the 

bioinformatics tools are used. The publicly available 

comprehensive database GenBank contains amino-

acid sequences for almost 260 000 formally described 

species (18). The complete genomic sequence of the 

virus SARS-CoV-2 was selected and isolated from 

GenBank (https://www.ncbi.nlm.nih.gov) with an 

Accession number MT012098.1 and the whole 

proteomic sequence of SARS-CoV-2 retrieved in the 

FASTA format. 
 

Prediction of antigenic determinants 
 

1. Emboss antigenic 
 

The Antigenic predicts potentially antigenic regions of 

a protein sequence using Kolaskar and Tongaonkar's 

strategy. The hydrophobic residues Cys, Leu, and Val, 

if they occur on the surface of a protein, are more 

likely to be a part of antigenic sites, according to data 

analytically defined antigenic sites on proteins (19). 

the complete nucleotide sequences are retrieved using 

EMBOSS antigenic tool and located that the epitopes 

which having Accessible surface area (ASA) Value of 

over 30% (shown in Table. 2) are considered as 

antigenic epitopes using the mathematical formula. 

Accessibility surface area (ASA) represents the 

component of the peptide (in percentage) that is 

Accessible on the surface of the globular protein 

structure. for every antigenic peptide, ASA was 

Calculated by the formula.  

ASA = [(L+C+V)/ Total no. of residues within the 

peptide] X 100  

where, 

 L= number of Lysine residues in peptide  

C= number of Cysteine residues inpeptide 

 V= number of Valine residues inpeptide 
 

2. Immunomedicine group 
 

This method helps to predict those determinants from 

within a gene sequence that are likely to be antigenic 

by eliciting a cell mediated immune response. 

Antigenic determinants are determined using the 

strategy of Kolaskar and Tongaonkar as this method 

gives 75% accuracy as compared to other available 

methods. These Predictions are supported a table by 

using IMMUNOMEDICINE group and, and that 

reflects the presence of amino acid residues in 

segmental epitopes that have been studied 

experimentally (19). The complete nucleotide 

sequences are retrieved one more time using 

IMMUNOMEDICINEgroup tool and located that the 

epitopes which having Accessible surface area (ASA) 

Value of over 30% are considered as antigenic 

epitopes using the formula. The retrieved nucleotide 

sequences which are antigenic epitopes having 

Accessible surface area (ASA) Value of over 30% are 

compared with the antigenic epitopes retrieved from 

EMBOSS antigenic tool (Table. 2). 
 

3. Prediction of MHC binding  
 

3.1 MHCPred is an additive approach for predicting 

MHC class I binding affinity, and allele-specific 

Quantitative Structure Activity Relationship 

(QSAR) models were created using partial least 

squares (PLS)(20-22). The MHCPred 

bioinformatic tool is used in this study to predict 

the possible antigenic epitopes presented on the 

cell surface by MHC I molecules to CD8 positive 

T lymphocytes using the MHCPred bioinformatic 

tool. It combines existing proteasomal cleavage 

predictions with peptide anchoring to MHC I 

molecules and the MHCPred results shown in 

table 3. 

3.2 nHLAPred bioinformatic tool is employed to   

predict MHC I binders and are filtered to potential 

CTL epitopes by refining through Proteasomal 

matrices (23).  The entire protein sequence of 

SARS-CoV-2 was retrieved using nHLAPred, 

which allowed all predicted binders for unique 

MHC alleles to be displayed in a single line by 

simply colouring the predicted binders. 
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3.3 RANKPEP -The conserved epitopes predicted 

using the RANKPEP web server, which has a 

variability masking function, as a predictor of 

MHC-peptide binding from a collection of aligned 

peptides known to bind to a given MHC molecule 

(24). The complete Protein sequence SARS-CoV-

2 analyzed with the help of RANKPEP web server 

to find out individually binding epitopes to a 

particular MHC class I molecule based on the 

predetermined threshold value. 

3.4 VAXIGN is a vaccine design software that used 

microbial genomic sequence as input data and 

epitope binding to MHC class I molecule to 

predict potential vaccine targets based on various 

vaccine design criteria (25). The complete 

proteomic sequence of SARS-Cov-2 analyzed 

using Vaxign. In Vaxign-Vaxitop method used to   

predict SARS-Cov-2peptide candidates for 

vaccine development. 
 

RESULTS 
 

Identification of epitope (peptide) 
 

The Accessible Surface area (ASA) value of the 

EMBOSS antigenic determinants were calculated 

using mathematical formula.  The antigenic 

determinants with more than 30 % ASA value are 

selected as epitopes and we found 27 epitopes having 

ASA value more than 30% (Table 1).  The EMBOSS 

results are compared with the IMMUNOMEDICINE 

group results to find out common epitopes. The 

antigenic determinant with 50 % highest ASA value 

considered as a potential epitope (Table. 2). 
 

ASA= (L+V+C)/Total number of residues X 100 
 

Table 1: EMBOSS results  
 

#Sequence Score Max_score_pos ASA Value 

GCTACCCTCT 

 

1.219 lengths 10 at residues 

836->845 

840 50% 

 

Table 2: 10 Epitopes with more than 30 % ASA Value and sequence number 4 is a potential Epitope (peptide) with 

50 % ASA value. 
 

Sequence 

Number 

 

EMBOSS 

Antigenic Determinant 

IMMUNOMEDICINE 

Antigenic Determinant 

Score 

Emboss 

Accessible Surface 

area (ASA) Emboss/ 

Immunomed (%) 

1 GTGCCACTAC GGTGCCACTA 1.241 40 

2 GCTCGAACTGCACCTCA TGCTCGAACTGCACCTC 1.241 41.17 

3 GTCCTTGTCCCTCA TGTCCTTGTCCCTC 1.219 42.85 

4 GCTACCCTCT GGCTACCCTC 1.219 50 

5 CATACACTCGCT GCATACACTCGC 1.214 41.66 

6 CGGCCCAAA TCGGCCCAA 1.209 44.44 

7 TACACCAG GTACACCA 1.191 37.5 

8 CAGCCGATCATCAGCACATCT GCAGCCGATCATCAGCACATC 1.186 38 

9 CGTCCGG TCGTCCG 1.120 42.85 

10 CTGCTCG GCTGCTC 1.115 42.85 
 

Table 3: MHCPredresult shows that GCTACCCTC epitope (peptide) binds with MHC Class I allele HLA-A*0201 

and ‘- ‘represents non-binders. 
 

Amino acid 

groups 

Predicted -

logIC50 (M) 

Predicted 

IC50 Value (nM) 

Confidence of 

prediction (Max = 1) 

ACATCTAGG 7.026 94.19 0.78 

CCTTCTAGC 6.75 177.83 0.89 

GCTGGTAGC 6.691 203.70 0.89 

GCATGCTTA 6.423 377.57 0.89 

AAAGATGGC 6.344 452.90 1.00 

ATGTGTTCA 6.277 528.45 1.00 

GCTGGTGGC 6.199 632.41 0.89 

CCTGATGGC 6.134 734.51 0.89 

CATTAAAGA 6.059 872.97 1.00 

AAATACCAG 6.014 968.28 0.89 

ACGGTAATA 5.966 1081.43 0.89 

GTTGACAGG 5.806 1563.15 0.89 

AACTTTCGA 5.804 1570.36 1.00 

CAGTACGGT 5.803 1573.98 1.00 

GCAAGGTTC 5.803 1573.98 0.89 

TCATGTTAT 5.802 1577.61 0.89 

AGATGGAGA 5.802 1577.61 1.00 
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CTTTGTCCG 5.802 1577.61 0.89 

AAAGTCATT 5.801 1581.25 1.00 

AACTCGAAG 5.801 1581.25 0.89 

TTATGAAGA 5.697 2009.09 1.00 

TCATTTGAC 5.507 3111.72 0.89 

TACTGTCGT 5.397 4008.67 1.00 

GCTACCCTC 5.324 4742.42 0.89 

CACGTCAAC 5.303 4977.37 1.00 

ATGGTTGAG - - - 

TAAGAACGG - - - 

TTGTCCCTG - - - 
 

The results are shown in Table 3. with three columns. 

The peptide sequences shown in the first column, the 

predicted IC50 and IC50 values shown in the second and 

the third column respectively. The peptide sequence is 

sorted according to their IC50 values. Non-binders are 

listed at the bottom of the table, and peptides with 

lower IC50 values (or higher expected IC50 values) are 

listed first. If the IC50 value is greater than 5000, the 

peptide will not bind to MHC molecules. 

 

Table 4: nHLA Pred result shows that predicted GCTACCCTC epitope (peptide) is a potential MHCbinder which 

binds with MHC Class I alleles HLA-A*0202 and HLA-A*0203 
 

HLA

-

A*0

202

 [A

NNs

] 

ACCTTCCCAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATCTGTTCTCTAAACGAACTTTAAAAT

CTGTGTGGCTGTCACTCGGCTGCATGCTTAGTGCACTCACGCAGTATAATTAATAACTAATTACTGTCGT

TGACAGGACACGAGTAACTCGTCTATCTTCTGCAGGCTGCTTACGGTTTCGTCCGTGTTGCAGCCGATCA

TCAGCACATCTAGGTTTCGTCCGGGTGTGACCGAAAGGTAAGATGGAGAGCCTTGTCCCTGGTTTCAACG

AGAAAACACACGTCCAACTCAGTTTGCCTGTTTTACAGGTTCGCGACGTGCTCGTACGTGGCTTTGGAGA

CTCCGTGGAGGAGGTCTTATCAGAGGCACGTCAACATCTTAAAGATGGCACTTGTGGCTTAGTAGAAGTT

GAAAAAGGCGTTTTGCCTCAACTTGAACAGCCCTATGTGTTCATCAAACGTTCGGATGCTCGAACTGCAC

CTCATGGTCATGTTATGGTTGAGCTGGTAGCAGAACTCGAAGGCATTCAGTACGGTCGTAGTGGTGAGAC

ACTTGGTGTCCTTGTCCCTCATGTGGGCGAAATACCAGTGGCTTACCGCAAGGTTCTTCTTCGTAAGAAC

GGTAATAAAGGAGCTGGTGGCCATAGTTACGGCGCCGATCTAAAGTCATTTGACTTAGGCGACGAGCTTG

GCACTGATCCTTATGAAGATTTTCAAGAAAACTGGAACACTAAACATAGCAGTGGTGTTACCCGTGAACT

CATGCGTGAGCTTAACGGAGGGGCATACACTCGCTATGTCGATAACAACTTCTGTGGCCCTGATGGCTAC

CCTCTTGAGTGCATTAAAGACCTTCTAGCACGTGCTGGTAAAGCTTCATGCACTTTGTCCGAACAACTGG

ACTTTATTGACACTAAGAGGGGTGTATACTGCTGCCGTGAACATGAGCATGAAATTGCTTGGTACACGGA

ACGTTCTGAAAAGAGCTATGAATTGCAGACACCTTTTGAAATTAAATTGGCAAAGAAATTTGACACCTTC

AATGGGGAATGTCCAAATTTTGTATTTCCCTTAAATTCCATAATCAAGACTATTCAACCAAGGGTTGAAA 

HLA

-

A*0

203

  

ACCTTCCCAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATCTGTTCTCTAAACGAACTTTAAAAT

CTGTGTGGCTGTCACTCGGCTGCATGCTTAGTGCACTCACGCAGTATAATTAATAACTAATTACTGTCGT

TGACAGGACACGAGTAACTCGTCTATCTTCTGCAGGCTGCTTACGGTTTCGTCCGTGTTGCAGCCGATCA

TCAGCACATCTAGGTTTCGTCCGGGTGTGACCGAAAGGTAAGATGGAGAGCCTTGTCCCTGGTTTCAACG

AGAAAACACACGTCCAACTCAGTTTGCCTGTTTTACAGGTTCGCGACGTGCTCGTACGTGGCTTTGGAGA

CTCCGTGGAGGAGGTCTTATCAGAGGCACGTCAACATCTTAAAGATGGCACTTGTGGCTTAGTAGAAGTT

GAAAAAGGCGTTTTGCCTCAACTTGAACAGCCCTATGTGTTCATCAAACGTTCGGATGCTCGAACTGCAC

CTCATGGTCATGTTATGGTTGAGCTGGTAGCAGAACTCGAAGGCATTCAGTACGGTCGTAGTGGTGAGAC

ACTTGGTGTCCTTGTCCCTCATGTGGGCGAAATACCAGTGGCTTACCGCAAGGTTCTTCTTCGTAAGAAC

GGTAATAAAGGAGCTGGTGGCCATAGTTACGGCGCCGATCTAAAGTCATTTGACTTAGGCGACGAGCTTG

GCACTGATCCTTATGAAGATTTTCAAGAAAACTGGAACACTAAACATAGCAGTGGTGTTACCCGTGAACT

CATGCGTGAGCTTAACGGAGGGGCATACACTCGCTATGTCGATAACAACTTCTGTGGCCCTGATGGCTAC

CCTCTTGAGTGCATTAAAGACCTTCTAGCACGTGCTGGTAAAGCTTCATGCACTTTGTCCGAACAACTGG

ACTTTATTGACACTAAGAGGGGTGTATACTGCTGCCGTGAACATGAGCATGAAATTGCTTGGTACACGGA

ACGTTCTGAAAAGAGCTATGAATTGCAGACACCTTTTGAAATTAAATTGGCAAAGAAATTTGACACCTTC

AATGGGGAATGTCCAAATTTTGTATTTCCCTTAAATTCCATAATCAAGACTATTCAACCAAGGGTTGAAA 

 

Table 4 shows the nHLAPred result, which displays 

all predicted binders for unique MHC alleles in a 

single line by simply colouring the expected or 

predicted binders. Every predicted binder's starting 

residue is shown in red, while the remaining residues 

are shown in blue. The option is very helpful in 

detecting the promiscuous MHC binder in the series. 
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Table 5: RANKPEP Result: Epitope (Peptide) highlighted in colour represents predicted binder to MHC class I allele 

HLA-A*0207 
 

RANK POS. N SEQUENCE C MW (Da) SCORE 

1 808 TAT GTCGATAAC AAC 735.82 10.756 

2 2085 GCA GTGGCTAAC TAA 721.79 6.365 

3 1428 TGG CTTGAAAAC CAT 749.85 4.34 

4 1603 CTT CTTGAAATA CTC 747.81 4.054 

5 833 CTG ATGGCTACC CTC 767.88 2.681 
 

The peptides predicted out of a protein sequence 

according to absolute scores and specify peptides as 

binders or non-binders based on predetermined 

thresholds were the product of the RANKPEP.The 

peptides predicted out of a protein sequence according 

to absolute scores and specify peptides as binders or 

non-binders based on predetermined thresholds were 

the product of the RANKPEP. 
 

The peptides predicted out of a protein sequence 

according to absolute scores and specify peptides as 

binders or non-binders based on predetermined 

thresholds were the result of the RANKPEP. 
 

Table 6:  VAXIGN RESULT : the vaccine epitope GCTACCCTCT binds with MHC CLASS I Allele HLA-A*0202 
 

MHC I Binding Prediction 

Index Epitope Epitope Length MHC Allele P value Matching from Matching to Location 

1 ACAGCCCTA 9 HLA-A*02:02 0.0132 447 455  

2 ATACTCCAA 9 HLA-A*02:02 0.0173 1609 1617  

3 CTAAACTTA 9 HLA-A*02:02 0.0223 2345 2353  

4 CTACCCTCT 9 HLA-A*02:02 0.0235 837 845  

5 ACAACCATT 9 HLA-A*02:02 0.0258 2541 2549  

6 CTTCCCACA 9 HLA-A*02:02 0.0296 2491 2499  

7 AAAGCCCCA 9 HLA-A*02:02 0.0296 2452 2460  

8 ATCGCCATT 9 HLA-A*02:02 0.0354 1669 1677  
 

The Vaxign result shown in Table 6 using Vaxitop 

epitope prediction method show that selected epitope 

(peptide)after the initial screening predicted to bind 

with MHC class I allele HLA-A*02:02,  and it relies 

on statistical P-value.We identified 8 peptide 

candidates in which  CTACCCTCT epitope  is a 

potential peptide candidate for SARS-Cov-2 vaccine 

development. 
 

Epitope (peptide) binding with MHC class I 

molecule  
 

From the result of EMBOSS antigenic and 

IMMUNOMEDICINE group the selected epitope 

GCTACCCTCT binds with MHC Class I molecule 

and it is confirmed with MHC binding tools such as 

MHCPrednHLAPred, RANKPEP   and web server 

vaccine design program VAXIGN. 
 

DISCUSSION 
 

Corona Virus disease 2019 is an acronym for COVID-

19 is a communicable disease caused by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) 

novel virus emerged in humans in December 2019 

from Wuhan, China (26). COVID-19 has a wide range 

of clinical manifestations, ranging from asymptomatic 

and mild flu-like symptoms to acute respiratory 

distress syndrome and death. In COVID-19 cases, 

long-term neurological, pulmonary, and cardiological 

complications have also been identified (27). SARS-

CoV-2 vaccines of various types have been produced 

and tested in preclinical studies. Although only a few 

of them advanced to clinical trials, the creation and 

mass production of effective vaccines is a costly and 

time-consuming operation. To reduce the time needed 

to produce a potent SARS-CoV-2 vaccine candidate, 

researchers used immuno-informatics and reverse 

vaccinology methods to classify and design a peptide 

vaccine. In recent time, there are many well defined 

bioinformatics approaches available to design a 

successful new generation vaccine which are safe in 

humans (28). To develop a vaccine in short time of 

period due to the pandemic situation like a COVID-19, 

the new technologies like computational immunology 

and immuno-informatic tools are used to develop the 

vaccine candidates or vaccine by understanding the 

human immune response against a pathogen (29).  
 

The epitope's proper binding to the MHC I antigen-

binding cleft is needed for the induction of the desired 

immune response (30). 
 

The main aim of this research is to find an antigenic 

epitope that could be used as a vaccine candidate 

against the SARS-Cov-2 Virus. The complete genome 

sequence of a contagious SARS-CoV-2 strain was 

obtained in FASTA format from the GenBank 

database. The whole genome screened to identify the 

protein sequence which is antigenic, and the antigen 

determinant peptide predicted with different databases 

like EMBOSS antigenic, IMMUNOMEDICINE 

group based on the Accessible Surface area (ASA) 

calculation. The peptide is chosen only if an epitope 

has been found. Almost all bioinformatic systems 

forecast it based on their predictive ratings. The 

identified antigenic determinant predicted to bind with 

MHC class I molecule using MHC binding prediction 
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tools like MHCPred, nHLAPred, RANKPEP and web-

based vaccine design program VAXIGN.  
 

CONCLUSION 
 

We proposed in this study to identify an antigenic 

determinant that could be used as a possible vaccine 

candidate against the SARS-Cov-2 Virus. An 

infectious SARS-CoV-2 strain's complete genome 

sequence was obtained from the GenBank database. 

The analysis from this study provides information 

about antigenic determinants and their ASA value 

analysis in the predicted model. We identified the 

protein sequence which is potential epitope predicted 

with different databases and Accessible Surface area 

(ASA) value. The identified epitope is predicted to 

bind with MHC class I molecule using MHC binding 

prediction tools. 
 

On the basis of the findings, it could be concluded that 

from the whole analysis, the in silico identified epitope 

GCTACCCTCT is the potent vaccine candidate 

against SARS-CoV-2 virus or COVID-19 and further 

pre-clinical study is needed to validate the results.  
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