Characterization and biochemical activities of novel functional antimicrobial peptide (AMP) from Trichogramma chilonis


  • Shimoga V. Sunil
  • Hulikal S. Santosh Kumar
  • Siddanakoppalu N. Pramod
  • Betadthunga T. Prabhakar
  • Mahanthesh B.N. Naika
  • Thippande G. Thippeswamy
  • Pathappa Niranjana



Trichogramma chilonis, insect peptide, angiogenesis, antimicrobial peptide (AMP)


Introduction and Aim: The antimicrobial peptides (AMPs) are generally found in invertebrates, mammals, birds, plants and insects. AMPs produced by insect parasitoids contribute to innate immunity to resist infection due to lack of adaptive immunity. T. chilonis is one of the most effective endoparasitoid wasps for controlling lepidopterous insects. Several attempts have been made to isolate, characterize and develop a commercially viable product of AMPs from various insect sources. The present study aimed to characterize AMP from T. chilonis for potential antimicrobial and anti-cancer properties. 


Methods: AMP was identified through T. chilonis transcriptome sequence and designed in silico and synthesized. Its purity was quantified using RP-HPLC, and the mass identified by mass spectrophotometry. LC/MS-MS was employed to predict the sequence and the BLAST program used to compare the sequence. AMP was tested for haemolytic activity and antimicrobial activity. Two pathogenic bacteria and fungal strains were used and IC50 values and MIC values were predicted against microbial strains. 


Results: Synthetic peptide was found to be 95% homogenous with molecular weight of 3.48 kD.  The peptide was identified to be a novel antimicrobial peptide consisting of 33 amino acid residues, and has a low computed instability index of -0.1.55 with high hydrophobic ratio of 27.27%. The antimicrobial activity revealed that T. chilonis antimicrobial peptide (TC-AMP) strongly inhibits the growth of selected human bacterial and fungal pathogens. While the haemolytic assay showed that the peptide did not obliterate human RBC in vitro. TC-AMP also showed an efficient inhibition of angiogenesis by in vivo model as evident by inhibition of vascularization.


Conclusions: AMP derived from the parasitoid has a potent antibiotic and anti-angiogenesis property. The peptide can be used as a potential antimicrobial and anticancer drug in near future with more detailed studies on its targeted applications.

Author Biographies

Shimoga V. Sunil

Department of PG Studies and Research in Biochemistry, Kuvempu University, Shankarghatta, 577 451, Karnataka, India

Hulikal S. Santosh Kumar

Department of PG Studies and Research in Biotechnology and Bioinformatics, Kuvempu University, Shankarghatta, 577 451, Karnataka, India

Siddanakoppalu N. Pramod

Department of Studies in Food Technology, Davangere University, Shivagangotri, Davangere, 577002, Karnataka India

Betadthunga T. Prabhakar

Department of PG Studies and Research in Biotechnology, Sahyadri Science College, Shivamogga, Karnataka, India

Mahanthesh B.N. Naika

Department of Biotechnology and Crop Improvement, KRC College of Horticulture, Arabhavi, 591218, UHS Bagalkot, Karnataka, India

Thippande G. Thippeswamy

Department of Studies and Research in Biochemistry, Tumkur University, Tumkur-572103, Karnataka, India

Pathappa Niranjana

Department of PG Studies and Research in Biochemistry, Kuvempu University, Shankarghatta, 577 451, Karnataka, India


Sun J.W., Hu, H.Y., Nkunika, P.O., Dai, P., Xu,. W., Bao, H.P., et al., Performance of Two Trichogrammatid Species from Zambia on Fall Armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Insects. 2021;12(10):859. DOI:

Cherif, A., Mansour, R., Grissa-Lebdi, K. The egg parasitoids Trichogramma: from laboratory mass rearing to biological control of lepidopteran pests. Biocontrol Sci. 2021;31(7):661-693. DOI:

Martel, V., Johns, R.C., Jochems-Tanguay, L., Jean, F., Maltais, A., Trudeau, S., et al., The use of UAS to release the egg parasitoid Trichogramma spp. (Hymenoptera: Trichogrammatidae) against an agricultural and a forest pest in Canada. J. Econ. Entomol. 2021;114(5):1867-1881. DOI:

Feng, M., Fei, S., Xia, J., Labropoulou, V., Swevers, L., Sun, J. Antimicrobial peptides as potential antiviral factors in insect antiviral immune response. Front. Immunol. 2020;11:2030. DOI:

Moretta, A., Salvia, R., Scieuzo, C., Di Somma, A., Vogel, H., Pucci, P., et al., A bioinformatic study of antimicrobial peptides identified in the Black Soldier Fly (BSF) Hermetia illucens (Diptera: Stratiomyidae). Scientific Reports. 2020;10(1):1-4. DOI:

Bin Hafeez, A., Jiang, X., Bergen, P. J., Zhu, Y. Antimicrobial peptides: An update on classifications and databases. Int. J. Mol. Sci. 2021; 22(21):11691. DOI:

Sunil, S.V., Kerima, O.Z., Kumar, H.S., Prabhakar, B.T., Pramod, S.N., Niranjana, P. In Silico Characterization of a Transcript Code Based Screening of Antimicrobial Peptide from Trichogramma chilonis. Int. J. Pept. Res. 2021;(4):2861-2872. DOI:

Balouiri, M., Sadiki, M., Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016;6(2):71-79. DOI:

Sudarshan, B.L., Maheshwar, P.K., Priya, P.S., Sanjay, K. R. Volatile and phenolic compounds in freshwater diatom Nitzschia palea as a potential oxidative damage protective and anti-inflammatory source. Pharmacogn. Mag. 2019;15(64):228. DOI:

Lakshmegowda, S.B., Rajesh, S.K., Kandikattu, H.K., Nallamuthu, I., Khanum, F. In vitro and in vivo studies on hexane fraction of Nitzschia palea, a freshwater diatom for oxidative damage protective and anti-inflammatory response. Rev. bras. farmacogn. 2020;30(2):189-201. DOI:

Meerloo, J.V., Kaspers, G.J., Cloos, J. Cell sensitivity assays: the MTT assay. In cancer cell culture. Humana Press. 2011;237-245. DOI:

Khan, S., Pathak, P., Vasudevan, S., Nayak, D. Non-invasive photoacoustic screening of blood vasculature during anti-angiogenesis using CAM assay. OSA Continuum. 2021;4(11):2821-2836. DOI:

Sultana, A., Luo, H., Ramakrishna, S. Antimicrobial peptides and their applications in biomedical sector. Antibiotics. 2021;10(9):1094.

Thankappan, B., Sivakumar, J., Asokan, S., Ramasamy, M., Pillai, M.M., Selvakumar, R., Angayarkanni, J. Dual antimicrobial and anticancer activity of a novel synthetic alpha-helical antimicrobial peptide. Eur. J. Pharm. Sci. 2021;161:105784. DOI:

Pawlas, J., Rasmussen, J.H. Circular aqueous fmoc/t-bu solid phase peptide synthesis. ChemSusChem. 2021;14(16):3231-3236. DOI:

Valluri, V.R., Katari, N.K., Khatri, C., Kasar, P., Polagani, S.R., Jonnalagadda, S. B. A novel LC-MS/MS method for simultaneous estimation of acalabrutinib and its active metabolite acalabrutinib M 27 in human plasma and application to a human pharmacokinetic study. RSC advances. 2022;12(11):6631-6639. DOI:

Greibe, E., Leth-Moller, M., Stampe, S., Ovesen, P., Pedersen, M., Hoffmann-Lucke, E. Development and validation of an LC–MS/MS method for the quantification of artificial sweeteners in human matrices. Biomed. Chromatogr. 2022;36(6):e5350. DOI:

Seidler, J., Zinn, N., Boehm, M.E., Lehmann, W.D. De novo sequencing of peptides by MS/MS. Proteomics. 2010;10(4):634-649. DOI:

Manniello, M.D., Moretta, A., Salvia, R., Scieuzo, C., Lucchetti, D., Vogel, H., et al., Insect antimicrobial peptides: Potential weapons to counteract the antibiotic resistance. Cell. Mol. Life Sci. 2021;78(9):4259-4282. DOI:

Garratty, G. Immune hemolytic anemia associated with drug therapy. Blood reviews. 2010;24(4-5):143-150. DOI:

Kamiloglu, S., Sari, G., Ozdal, T., Capanoglu, E. Guidelines for cell viability assays. Food Frontiers. 2020;1(3):332-349. DOI:

Shoari, A., Khodabakhsh, F., Cohan, R.A., Salimian, M., Karami, E. Anti-angiogenic peptides application in cancer therapy; a review. Res Pharm Sci. 2021;16(6):559. DOI:

Lugano, R., Ramachandran, M., Dimberg, A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 2020;77(9):1745-1770. DOI:

Sultana, A., Luo, H., Ramakrishna, S. Antimicrobial peptides and their applications in biomedical sector. Antibiotics. 2021;10(9):1094. DOI:

Zhang, Q.Y., Yan, Z.B., Meng, Y.M., Hong, X.Y., Shao, G., Ma, J.J., Fu, C.Y. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil. Med. Res. 2021;8(1):1-25. DOI:




How to Cite

V. Sunil S, Santosh Kumar HS, N. Pramod S, T. Prabhakar B, B.N. Naika M, G. Thippeswamy T, Niranjana P. Characterization and biochemical activities of novel functional antimicrobial peptide (AMP) from Trichogramma chilonis. Biomedicine [Internet]. 2022 Nov. 14 [cited 2022 Nov. 27];42(5):887-9. Available from:



Original Research Articles

Plum Analytics