Micronutrients- The crucial dietary elements in Covid-19 pandemic: A review


  • Sumit Kumar
  • Shailaja S. Moodithaya
  • Adithi K.
  • Pratik Kumar Chatterjee




COVID-19, vitamin D, vitamin C, infectious disease, virus


The mutation of the SARS-CoV-2 virus, which cause person-to-person transmission, is the pivotal reason for the pandemic outbreak in the year 2020. Infection symptoms include fever, dry cough, lethargy, severe pneumonia, respiratory distress syndrome, and death. COVID-19 induces a systemic inflammatory reaction that impairs the immune system, commonly known as cytokine release syndrome. Pro-inflammatory cytokines and chemokines are abundant in COVID-19 sufferers' bodies. COVID-19 has a disproportionate impact on the elderly, both directly and through several comorbidities associated with age. Nutrition is without hesitation, a crucial factor in maintaining good health. Some nutrients are essential for the immune system's health and function, exhibiting synergistic actions in critical immune response steps. Vitamin D, C, and Zinc stand out among these nutrients because they have immunomodulatory properties and help to maintain physical tissue barriers. Considering the viability of the virus, nutrients that boost the immunity henceforth the severity of viral infections declines with improved prognosis become important. As a result, the purpose of this review is to provide a complete outline of vitamins D, C, and zinc's involvement during the immune response towards infection, and to enlighten their commensal action of maintaining physical barriers including integument and mucous membrane. Appropriate vitamin D, C, and zinc consumption may represent a feasible pharmacological intervention during the COVID-19 pandemic due to the high surge in population interaction and the commencement of inflammation.


Author Biographies

Sumit Kumar

Department of Physiology, KVG Medical College and Hospital, Sullia, Karnataka, India

Shailaja S. Moodithaya

Department of Physiology, K.S Hegde Medical Academy, Nitte (Deemed to be University) Mangalore, India

Adithi K.

Department of Medicine, K.S Hegde Medical Academy, Nitte (Deemed to be University) Mangalore, India

Pratik Kumar Chatterjee

Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India


Jain, V., Yuan, J.M. Predictive symptoms and comorbidities for severe COVID-19 and intensive care unit admission: a systematic review and meta-analysis. International Journal of Public Health. Jun 2020;65: 533-546. DOI: https://doi.org/10.1007/s00038-020-01390-7

Caccialanza, R., Laviano, A, Lobascio, F., Montagna, E., Bruno, R., Ludovisi, S., et al., Early nutritional supplementation in non-critically ill patients hospitalized for the 2019 novel coronavirus disease (COVID-19): Rationale and feasibility of a shared pragmatic protocol. Nutrition. 2020;74: 110835. DOI: https://doi.org/10.1016/j.nut.2020.110835

Pan, D., Sze, S., Minhas, J.S., Bangash, M.N., Pareek, N., Divall, P., et al.,The impact of ethnicity on clinical outcomes in COVID-19: A systematic review. EClinicalMedicine.2020; 23, 100404. DOI: https://doi.org/10.1016/j.eclinm.2020.100404

Infusino, F., Marazzato, M., Mancone, M., Fedele, F., Mastroianni, CM., Severino, P., et al., Diet supplementation, probiotics, and nutraceuticals in SARS-CoV-2 infection: a scoping review. Nutrients. 2020; 12:1718. DOI: https://doi.org/10.3390/nu12061718

Gombart, AF., Pierre, A., Maggini, S. A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients. 2020; 12:236. DOI: https://doi.org/10.3390/nu12010236

De Castro, L.C.G. O sistemaendocrinológicovitamina D. Arq Bra Endocrinol Metabol. 2011; 55:566-575. DOI: https://doi.org/10.1590/S0004-27302011000800010

Clemens, T.L., Adams, J.S., Henderson, S.L., Holick, M.F. Increased skin pigment reduces the capacity of skin to synthesize vitamin D3. Lancet. 1982; 1:74-76. DOI: https://doi.org/10.1016/S0140-6736(82)90214-8

Holick, M.F. Environmental factors that influence the cutaneous production of vitamin D. Am J Clin Nutr. 1995: 61(3 Suppl): 638S-645S. DOI: https://doi.org/10.1093/ajcn/61.3.638S

Teymoori-Rad, M., Shokri, F., Salimi, V., Marashi, S.M. The interplay between vitamin D and viral infections. Rev Med Virol. 2019; 29: e2032. DOI: https://doi.org/10.1002/rmv.2032

Kottman, M.E., Chang, T.L. Defensins in innate antiviral immunity. Nat Rev Immunol. 2006; 6:447-456. DOI: https://doi.org/10.1038/nri1860

Daneshkhah A, Agrawal V, Eshein A, Subramanian H, Roy HK, Backman V. The possible role of vitamin D in suppressing cytokine storm and associated mortality in COVID-19 patients. MedRxiv. Jan 2020. doi: https://doi.org/10.1101/2020.04.08.20058578. DOI: https://doi.org/10.1101/2020.04.08.20058578

Jayawardena, R., Sooriyaarachchi, P., Chourdakis, M., Jeewandara, C., Ranasinghe, P. Enhancing immunity in viral infections, with special emphasis on COVID-19: a review. Diabetes MetabSyndr. 2020; 14:367-382. DOI: https://doi.org/10.1016/j.dsx.2020.04.015

Fujita, H., Sugimoto, K., Inatomi, S. Tight junction proteins claudin-2 and-12 are critical for Vitamin D-dependent Ca2 absorption between enterocytes. Molecular Biol Cell. 2008); 19:1912-1921. DOI: https://doi.org/10.1091/mbc.e07-09-0973

Palmer, H.G., Gonzalez-Sancho, J.M., Espada, J., Berciano, M.T., Puig, I, Baulida J., et al., Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of betacatenin signaling. J Cell Biol. 2001; 154:369-387. DOI: https://doi.org/10.1083/jcb.200102028

Birchmeier, W., Behrens, J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. BiochimBiophys Acta. 1994; 1198:11-26. DOI: https://doi.org/10.1016/0304-419X(94)90003-5

Carr, A.C., Maggini, S. Vitamin C and Immune Function. Nutrients. 2017; 9:1211. DOI: https://doi.org/10.3390/nu9111211

Carr, A., Frei B. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J. 1999; 13:1007-1024. DOI: https://doi.org/10.1096/fasebj.13.9.1007

Englard, S., Seifter, S. The biochemical functions of ascorbic acid. Annu Rev Nutr. 1986; 6:365-406. DOI: https://doi.org/10.1146/annurev.nu.06.070186.002053

Carr, A.C., Shaw, G.M., Fowler, A.A., Natarajan R. Ascorbatedependent vasopressor synthesis: a rationale for vitamin C administration in severe sepsis and septic shock? Crit Care. 2015; 19:418. DOI: https://doi.org/10.1186/s13054-015-1131-2

Burr, M.L., Elwood, P.C., Hole, D.J., Hurley, R.J., Hughes, R.E. Plasma, and leukocyte ascorbic acid levels in the elderly. Am J Clin Nutr. 1974; 27:144-151. DOI: https://doi.org/10.1093/ajcn/27.2.144

Fletcher, A.E., Breeze, E., Shetty, P.S. Antioxidant vitamins and mortality in older persons: findings from the nutrition add-on study to the medical research council trial of assessment and management of older people in the community. Am J Clin Nutr. 2003; 78:999-1010. DOI: https://doi.org/10.1093/ajcn/78.5.999

Truwit, J.D., Hite, R.D., Morris., P.E., DeWilde, C., Priday, A., Fisher, B., et al., Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: The CITRIS-ALI randomizedclinical trial. JAMA. 2019; 322: 1261-1270. DOI: https://doi.org/10.1001/jama.2019.11825

Khan, H.M.W., Parikh, N., Megala, S.M., Predeteanu, G.S. Unusual early recovery of a critical COVID-19patient after administration of intravenous vitamin C.Am. J. Case Rep.2020-21; e925521-1.

Ran, L., Zhao, W., Wang, J., Wang, H., Zhao, Y., Tseng, Y., et al., Extra dose of vitamin C based on a daily supplementation shortens the common cold: A meta-analysis of 9 randomized controlled trials. BioMed Res.Int.2018; 1837634. DOI: https://doi.org/10.1155/2018/1837634

Arvinte, C., Singh, M., Marik, P.E. Serum levels of vitamin C and vitamin D in a cohort of critically Ill COVID-19 patients of a North American community hospital intensive care unit in May 2020: a pilot study. Med Drug Discov. 2020; 8:100064. DOI: https://doi.org/10.1016/j.medidd.2020.100064

Hoang, B.X., Shaw, D.G., Fang, W., Han B. A Possible application of high dose vitamin C in the prevention and therapy for Coronavirus infections. J Glob Antimicrob Resist. 2020; 23:256-262. DOI: https://doi.org/10.1016/j.jgar.2020.09.025

Fisher, B.J., Kraskauskas, D., Martin, E.J., Farkas, D., Wegelin, J.A., Brophy, D., et al., Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. Am J Physiol Lung Cell Mol Physiol. 2012; 303: L20-L32. DOI: https://doi.org/10.1152/ajplung.00300.2011

Feyaerts, A.F., Luyten, W. Vitamin C as prophylaxis and adjunctive medical treatment for COVID-19? Nutrition. 2020; 79-80:110948. DOI: https://doi.org/10.1016/j.nut.2020.110948

Herold, T., Jurinovic, V., Arnreich, C., Lipworth, B.J., Hellmuth, J.C., von Bergwelt- Baildon, M., et, al., Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J Allergy Clin Immunol.2020 Jul; 146 (1):128-136.e4. DOI: https://doi.org/10.1016/j.jaci.2020.05.008

Sturniolo, G.C., Di Leo, V., Ferronato, A., D’Odorico, A., D’Inca, R. Zinc supplementation tightens “leaky gut” in Crohn’s disease. Inflamm Bowel Dis.2001; 7:94-98. DOI: https://doi.org/10.1097/00054725-200105000-00003

Miyoshi, Y., Tanabe S., Suzuki, T. Cellular zinc is required for intestinal epithelial barrier maintenance via the regulation of claudin-3 and occluding expression. Am J PhysiolGastrointest Liver Physiol. 2016; 311:105-116. DOI: https://doi.org/10.1152/ajpgi.00405.2015

Garcia-Hernandez, V., Quiros, M., Nusrat, A. Intestinal epithelial claudins:expression and regulation in homeostasis and inflammation. Ann N Y Acad Sci. 2017; 1397:66-79. DOI: https://doi.org/10.1111/nyas.13360

Wang, X., Valenzano, M.C., Mercado, J.M., Zurbach, E.P., Mullin, J.M. Zinc supplementation modifies tight junctions and alters barrier function of CACO-2 human intestinal epithelial layers. Dig Dis Sci. 2013; 58:77-87. DOI: https://doi.org/10.1007/s10620-012-2328-8

Finamore, A., Massimi, M., Conti, Devirgiliis L., Mengheri E. Zinc deficiency induces membrane barrier damage and increases neutrophil transmigration Frontiers in Nutrition. 2008; 138:1664-1670. DOI: https://doi.org/10.1093/jn/138.9.1664

Bao, S., Knoell, D.L. Zinc modulates cytokine-induced lung epithelial cell barrier permeability. Am J Physiol Lung Cell Mol Physiol.2006; 291: L1132-L1141. DOI: https://doi.org/10.1152/ajplung.00207.2006

Tran, C.D., Ball, J.M., Sundar, S., Coyle, P., Howarth, G.S. The role of zinc and metallothionein in the dextran sulfate sodium-induced colitis mouse model. 2007; 52:2113-2121. DOI: https://doi.org/10.1007/s10620-007-9765-9




How to Cite

Kumar S, S. Moodithaya S, K. A, Kumar Chatterjee P. Micronutrients- The crucial dietary elements in Covid-19 pandemic: A review. Biomedicine [Internet]. 2022 Nov. 14 [cited 2022 Nov. 27];42(5):851-5. Available from: https://biomedicineonline.org/home/article/view/1967

Plum Analytics 

Most read articles by the same author(s)