Screening of B-cell epitopes of Der-p1 and Der-p2 major aeroallergens by computational approach for designing immunotherapeutics


  • Varsha Reddy S. V.
  • Kiran Kumar Mudnakudu-Nagaraju



Allergic asthma, house dust mite, B-cell epitopes, In silico predictions, IEDB tools


Introduction and Aim: Allergic diseases are IgE-mediated hypersensitivity reactions affecting approximately 30% of the general population globally. Dermatophagoides pteronyssinus (Der-p) is the most prevalent house dust mite (HDM) species consisting of 23 mite allergen groups. Among these, group 1 and 2 are major allergenic proteins, which causes allergic asthma in 80% of sensitized individuals, with elevated IgE titres in the serum. This study involves in silico analysis of potential B-cell epitopes of group 1 and group 2 of Der-p, which can be utilized in designing immunotherapeutic vaccines.


Materials and Methods: Allergen sequences obtained from the database- International Union of Immunological Societies (IUIS), for predicting of B-cell epitopes. The physiochemical properties and secondary structures of the obtained sequence were evaluated. The sequences were further subjected to determining antigenicity, surface accessibility, and prediction of linear and discontinuous B-cell epitope by utilizing IEDB tools.


Results: The linear and discontinuous B-cell epitopes of Der-p1 and Der-p2 aeroallergen were predicted. Further, Der-p1 and Der-p2 showed 6 linear epitopes each respectively. Conformational epitopes predicted were 123 of Der-p1 and 72 of Der-p2 respectively, by the ElliPro tool. Based on the structure, antigenicity, and surface accessibility, only 10% of Der-p1 and Der-p2 which binds to B-cell epitopes are linear and the majority are discontinuous.


Conclusion: The linear and conformational epitopes of Der-p1 and Der-p2 are predicted using in silico tools. These identified epitopes might be useful for developing epitope-based immunotherapeutics for HDM allergy.

Author Biographies

Varsha Reddy S. V.

Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysuru-570015, Karnataka, India


Kiran Kumar Mudnakudu-Nagaraju

Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysuru-570015, Karnataka, India



Huang, F.L., Liao, E.C., Yu, S.J. House dust mite allergy: Its innate immune response and immunotherapy. Immunobiology. 2018;223(3):300-302. DOI:

Li, X., Yang, H.W., Chen, H., Wu, J., Liu, Y., Wei, J.F. In silico prediction of T and B cell epitopes of Der f 25 in Dermatophagoides farinae. International Journal of Genomics. 2014;2014. DOI:

Meng, Q., Liu, X., Li, P., He, L., Xie, J., Gao, X., et al., editors. The influence of house dust mite sublingual immunotherapy on the TSLP OX40L signalling pathway in patients with allergic rhinitis. International Forum of Allergy and Rhinology; 2016;6(8): 862-870. DOI:

Calderon, M.A., Linneberg, A., Kleine-Tebbe, J., De Blay, F., de Rojas, D.H.F, Virchow, J.C. et al., Respiratory allergy caused by house dust mites: What do we really know? Journal of Allergy and Clinical Immunology. 2015;136(1):38-48. DOI:

Lim, F.L., Hashim, Z., Than, L.T.L., Md Said, S., Hisham Hashim, J., Norback, D. Asthma, airway symptoms and rhinitis in office workers in Malaysia: associations with house dust mite (HDM) allergy, cat allergy and levels of house dust mite allergens in office dust. PloS One. 2015;10(4):e0124905. DOI:

Eifan, A.O., Calderon, M.A., Durham, S.R. Allergen immunotherapy for house dust mite: clinical efficacy and immunological mechanisms in allergic rhinitis and asthma. Expert Opinion on Biological Therapy. 2013;13(11):1543-1556. DOI:

Fortescue, R., Kew, K.M., Leung, M.S.T. Sublingual immunotherapy for asthma. Cochrane Database of Systematic Reviews. 2020(9). DOI:

Zubeldia, J., Ferrer, M., Davila, I., Justicia, J. Adjuvants in allergen-specific immunotherapy: modulating and enhancing the immune response. J Investig Allergol Clin Immunol. 2019:103-111. DOI:

Prickett, S., Rolland, J., O'Hehir, R. Immunoregulatory T cell epitope peptides: the new frontier in allergy therapy. Clinical and Experimental Allergy. 2015;45(6):1015-1026. DOI:

Abdelmoneim, A.H., Mustafa, M.I., Abdelmageed, M.I., Murshed, N.S., Dawoud, Ed., Ahmed, E.M., et al., Immunoinformatics design of multiepitopes peptide-based universal cancer vaccine using matrix metalloproteinase-9 protein as a target. Immunological Medicine. 2021;44(1):35-52. DOI:

Galanis, K.A., Nastou, K.,C., Papandreou, N.C., Petichakis, G.N., Pigis, D.G., Iconomidou, V.A. Linear B-cell epitope prediction for in silico vaccine design: A performance review of methods available via command-line interface. International Journal of Molecular Sciences. 2021;22(6):3210-3229. DOI:

Ebrahimi, N., Nezafat, N., Esmaeilzadeh, H., Ghasemi, Y., Nabavizadeh, S.H., Alyasin, S. In silico prediction of B-cell epitopes for twenty-five mite allergens: The therapeutic potentials for immunotherapy. Molecular and Cellular Probes. 2019;46:101408. DOI:

Chojnacki, S., Cowley, A., Lee, J., Foix, A, Lopez, R. Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Research. 2017;45(W1):W550-W553. DOI:

Buchan, D.W., Jones, D.T. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Research. 2019;47(W1):W402-W7. DOI:

Bienert, S., Waterhouse, A., De Beer, T.A., Tauriello, G., Studer, G., Bordoli, L., et al., The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Research. 2017;45(D1):D313-D319. DOI:

Jespersen, M.C., Peters, B., Nielsen, M., Marcatili, P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research. 2017;45(W1):W24-W29. DOI:

Fleri, W., Paul, S., Dhanda, S.K., Mahajan, S., Xu, X., Peters, B., et al., The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Frontiers in Immunology. 2017;8. DOI:

Ogi, K., Ramezanpour, M., Liu, S., Ferdoush Tuli, J., Bennett, C., Suzuki, M., et al., Der p 1 Disrupts the Epithelial Barrier and Induces IL-6 Production in Patients With House Dust Mite Allergic Rhinitis. Frontiers in Allergy. 2021. DOI:

Adji, A., Niode, N.J., Memah, V.V., Posangi, J., Wahongan, G.J., Ophinni, Y., et al., Designing an epitope vaccine against Dermatophagoides pteronyssinus: An in silico study. Acta Tropica. 2021;222:106028. DOI:

Thomas, W.R. IgE and T-cell responses to house dust mite allergen components. Molecular Immunology. 2018;100:120-125. DOI:

Owji, H., Nezafat, N., Negahdaripour, M., Hajiebrahimi, A., Ghasemi, Y. A comprehensive review of signal peptides: Structure, roles, and applications. European Journal of Cell Biology. 2018;97(6):422-441. DOI:

Wiedemann, C., Kumar, A., Lang, A., Ohlenschlager, O. Cysteines and disulfide bonds as structure-forming units: insights from different domains of life and the potential for characterization by NMR. Frontiers in Chemistry. 2020;8. DOI:

Glesner, J., Kapingidza, A.B., Godzwon, M., Offermann, L.R., Mueller, G.A., DeRose, E.F., et al., A human IgE antibody binding site on Der p 2 for the design of a recombinant allergen for immunotherapy. The Journal of Immunology. 2019;203(9):2545-2556. DOI:




How to Cite

Reddy S. V. V, Mudnakudu-Nagaraju KK. Screening of B-cell epitopes of Der-p1 and Der-p2 major aeroallergens by computational approach for designing immunotherapeutics . Biomedicine [Internet]. 2022 Nov. 14 [cited 2022 Nov. 27];42(5):898-905. Available from:



Original Research Articles

Plum Analytics