Screening of B-cell epitopes of Der-p1 and Der-p2 major aeroallergens by computational approach for designing immunotherapeutics

Authors

  • Varsha Reddy S. V.
  • Kiran Kumar Mudnakudu-Nagaraju

DOI:

https://doi.org/10.51248/.v42i5.2126

Keywords:

Allergic asthma, house dust mite, B-cell epitopes, In silico predictions, IEDB tools

Abstract

Introduction and Aim: Allergic diseases are IgE-mediated hypersensitivity reactions affecting approximately 30% of the general population globally. Dermatophagoides pteronyssinus (Der-p) is the most prevalent house dust mite (HDM) species consisting of 23 mite allergen groups. Among these, group 1 and 2 are major allergenic proteins, which causes allergic asthma in 80% of sensitized individuals, with elevated IgE titres in the serum. This study involves in silico analysis of potential B-cell epitopes of group 1 and group 2 of Der-p, which can be utilized in designing immunotherapeutic vaccines.

 

Materials and Methods: Allergen sequences obtained from the database- International Union of Immunological Societies (IUIS), for predicting of B-cell epitopes. The physiochemical properties and secondary structures of the obtained sequence were evaluated. The sequences were further subjected to determining antigenicity, surface accessibility, and prediction of linear and discontinuous B-cell epitope by utilizing IEDB tools.

 

Results: The linear and discontinuous B-cell epitopes of Der-p1 and Der-p2 aeroallergen were predicted. Further, Der-p1 and Der-p2 showed 6 linear epitopes each respectively. Conformational epitopes predicted were 123 of Der-p1 and 72 of Der-p2 respectively, by the ElliPro tool. Based on the structure, antigenicity, and surface accessibility, only 10% of Der-p1 and Der-p2 which binds to B-cell epitopes are linear and the majority are discontinuous.

 

Conclusion: The linear and conformational epitopes of Der-p1 and Der-p2 are predicted using in silico tools. These identified epitopes might be useful for developing epitope-based immunotherapeutics for HDM allergy.

Author Biographies

Varsha Reddy S. V.

Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysuru-570015, Karnataka, India

 

Kiran Kumar Mudnakudu-Nagaraju

Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysuru-570015, Karnataka, India

 

References

Huang, F.L., Liao, E.C., Yu, S.J. House dust mite allergy: Its innate immune response and immunotherapy. Immunobiology. 2018;223(3):300-302. DOI: https://doi.org/10.1016/j.imbio.2017.10.035

Li, X., Yang, H.W., Chen, H., Wu, J., Liu, Y., Wei, J.F. In silico prediction of T and B cell epitopes of Der f 25 in Dermatophagoides farinae. International Journal of Genomics. 2014;2014. DOI: https://doi.org/10.1155/2014/483905

Meng, Q., Liu, X., Li, P., He, L., Xie, J., Gao, X., et al., editors. The influence of house dust mite sublingual immunotherapy on the TSLP OX40L signalling pathway in patients with allergic rhinitis. International Forum of Allergy and Rhinology; 2016;6(8): 862-870. DOI: https://doi.org/10.1002/alr.21743

Calderon, M.A., Linneberg, A., Kleine-Tebbe, J., De Blay, F., de Rojas, D.H.F, Virchow, J.C. et al., Respiratory allergy caused by house dust mites: What do we really know? Journal of Allergy and Clinical Immunology. 2015;136(1):38-48. DOI: https://doi.org/10.1016/j.jaci.2014.10.012

Lim, F.L., Hashim, Z., Than, L.T.L., Md Said, S., Hisham Hashim, J., Norback, D. Asthma, airway symptoms and rhinitis in office workers in Malaysia: associations with house dust mite (HDM) allergy, cat allergy and levels of house dust mite allergens in office dust. PloS One. 2015;10(4):e0124905. DOI: https://doi.org/10.1371/journal.pone.0124905

Eifan, A.O., Calderon, M.A., Durham, S.R. Allergen immunotherapy for house dust mite: clinical efficacy and immunological mechanisms in allergic rhinitis and asthma. Expert Opinion on Biological Therapy. 2013;13(11):1543-1556. DOI: https://doi.org/10.1517/14712598.2013.844226

Fortescue, R., Kew, K.M., Leung, M.S.T. Sublingual immunotherapy for asthma. Cochrane Database of Systematic Reviews. 2020(9). DOI: https://doi.org/10.1002/14651858.CD011293.pub3

Zubeldia, J., Ferrer, M., Davila, I., Justicia, J. Adjuvants in allergen-specific immunotherapy: modulating and enhancing the immune response. J Investig Allergol Clin Immunol. 2019:103-111. DOI: https://doi.org/10.18176/jiaci.0349

Prickett, S., Rolland, J., O'Hehir, R. Immunoregulatory T cell epitope peptides: the new frontier in allergy therapy. Clinical and Experimental Allergy. 2015;45(6):1015-1026. DOI: https://doi.org/10.1111/cea.12554

Abdelmoneim, A.H., Mustafa, M.I., Abdelmageed, M.I., Murshed, N.S., Dawoud, Ed., Ahmed, E.M., et al., Immunoinformatics design of multiepitopes peptide-based universal cancer vaccine using matrix metalloproteinase-9 protein as a target. Immunological Medicine. 2021;44(1):35-52. DOI: https://doi.org/10.1080/25785826.2020.1794165

Galanis, K.A., Nastou, K.,C., Papandreou, N.C., Petichakis, G.N., Pigis, D.G., Iconomidou, V.A. Linear B-cell epitope prediction for in silico vaccine design: A performance review of methods available via command-line interface. International Journal of Molecular Sciences. 2021;22(6):3210-3229. DOI: https://doi.org/10.3390/ijms22063210

Ebrahimi, N., Nezafat, N., Esmaeilzadeh, H., Ghasemi, Y., Nabavizadeh, S.H., Alyasin, S. In silico prediction of B-cell epitopes for twenty-five mite allergens: The therapeutic potentials for immunotherapy. Molecular and Cellular Probes. 2019;46:101408. DOI: https://doi.org/10.1016/j.mcp.2019.05.004

Chojnacki, S., Cowley, A., Lee, J., Foix, A, Lopez, R. Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Research. 2017;45(W1):W550-W553. DOI: https://doi.org/10.1093/nar/gkx273

Buchan, D.W., Jones, D.T. The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Research. 2019;47(W1):W402-W7. DOI: https://doi.org/10.1093/nar/gkz297

Bienert, S., Waterhouse, A., De Beer, T.A., Tauriello, G., Studer, G., Bordoli, L., et al., The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Research. 2017;45(D1):D313-D319. DOI: https://doi.org/10.1093/nar/gkw1132

Jespersen, M.C., Peters, B., Nielsen, M., Marcatili, P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research. 2017;45(W1):W24-W29. DOI: https://doi.org/10.1093/nar/gkx346

Fleri, W., Paul, S., Dhanda, S.K., Mahajan, S., Xu, X., Peters, B., et al., The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Frontiers in Immunology. 2017;8. DOI: https://doi.org/10.3389/fimmu.2017.00278

Ogi, K., Ramezanpour, M., Liu, S., Ferdoush Tuli, J., Bennett, C., Suzuki, M., et al., Der p 1 Disrupts the Epithelial Barrier and Induces IL-6 Production in Patients With House Dust Mite Allergic Rhinitis. Frontiers in Allergy. 2021. DOI: https://doi.org/10.3389/falgy.2021.692049

Adji, A., Niode, N.J., Memah, V.V., Posangi, J., Wahongan, G.J., Ophinni, Y., et al., Designing an epitope vaccine against Dermatophagoides pteronyssinus: An in silico study. Acta Tropica. 2021;222:106028. DOI: https://doi.org/10.1016/j.actatropica.2021.106028

Thomas, W.R. IgE and T-cell responses to house dust mite allergen components. Molecular Immunology. 2018;100:120-125. DOI: https://doi.org/10.1016/j.molimm.2018.03.016

Owji, H., Nezafat, N., Negahdaripour, M., Hajiebrahimi, A., Ghasemi, Y. A comprehensive review of signal peptides: Structure, roles, and applications. European Journal of Cell Biology. 2018;97(6):422-441. DOI: https://doi.org/10.1016/j.ejcb.2018.06.003

Wiedemann, C., Kumar, A., Lang, A., Ohlenschlager, O. Cysteines and disulfide bonds as structure-forming units: insights from different domains of life and the potential for characterization by NMR. Frontiers in Chemistry. 2020;8. DOI: https://doi.org/10.3389/fchem.2020.00280

Glesner, J., Kapingidza, A.B., Godzwon, M., Offermann, L.R., Mueller, G.A., DeRose, E.F., et al., A human IgE antibody binding site on Der p 2 for the design of a recombinant allergen for immunotherapy. The Journal of Immunology. 2019;203(9):2545-2556. DOI: https://doi.org/10.4049/jimmunol.1900580

Downloads

Published

2022-11-14

How to Cite

1.
Reddy S. V. V, Mudnakudu-Nagaraju KK. Screening of B-cell epitopes of Der-p1 and Der-p2 major aeroallergens by computational approach for designing immunotherapeutics . Biomedicine [Internet]. 2022 Nov. 14 [cited 2022 Nov. 27];42(5):898-905. Available from: https://biomedicineonline.org/home/article/view/2126

Issue

Section

Original Research Articles

Plum Analytics