The identification of synthetic peptide vaccine candidate against SARS-CoV-2/COVID-19through reverse vaccinology approach


  • S. Pushkala
  • Sudha Seshayyan
  • Tammanna Bhajantri



Reverse vaccinology, synthetic peptide vaccine, SARS-CoV-2, COVID-19, epitope


Introduction and Aim:In emerging respiratory disease pathogens, the Corona viruses have become the main pathogens of respiratory viral disease outbreaks.SARS-Cov-2 is a new virus that has been identified in human and this very contagious novel corona virus has spread globally within the short period of time. The biological concept ofthe synthetic peptide vaccine is based on the induction of immune cells response depends on the immune cell receptor specificity to verify a presented peptide epitope. The identification of these epitopes by experimental procedures are expensive and time- consuming. Therefore,the approach of reverse vaccinology came into view. The approach of reverse vaccinology involves molecular docking, prediction of epitope tools, and desired immunogenic peptides analysis of population coverage in terms of design.The primary goal of this present study is to identify the antigenic determinant which might be a potent candidate vaccine against SARS-CoV-2.


Materials and Methods:The whole genome sequence of a contagious strain of SARS-CoV-2 retrieved from genomic database. The whole genome screenedto identify the protein sequence which is antigenic, and the antigen determinant peptide predicted with different databases and Accessible Surface Area (ASA) calculation. The selection of peptide depends on the prediction of identified epitope carried out according to their predictive scores by almost all bioinformatic tools.


Results:The identified antigenic determinant predicted to bind with MHC class I molecule using MHC binding prediction tools. In this study, the identified epitope is the best peptide having greater ASA value and binding with MHC class I molecule.


Conclusion:As this peptide is immunogenic epitope it might be a potent candidate vaccine against COVID-19 or SARS-CoV-2 virus. 

Author Biographies

S. Pushkala

Department of Immunology,  The Tamil Nadu Dr MGR Medical University,69, Anna SalaiRoad, Guindy, Chennai,600032, Tamil Nadu, India

Sudha Seshayyan

The Vice Chancellor, The Tamil Nadu Dr MGR Medical University,69, Anna SalaiRoad, Guindy, Chennai,600032, Tamil Nadu, India

Tammanna Bhajantri

Department of Immunology, The Tamil Nadu Dr MGR Medical University,69, Anna SalaiRoad, Guindy, Chennai,600032, Tamil Nadu, India


Hu, L., Chen, S., Fu, Y., Gao, Z., Long, H., Ren, H.W., et al., Risk factors associated with clinical outcomes in 323 Coronavirus disease 2019 (COVID-19) hospitalized patients in Wuhan, China. Clinical Infectious Diseases. 2020; 71(16):2089-2098.

Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature. 2020 Mar;579(7798):270-3. 1038/s41586-020-2012-7.

Fisher D, Heymann D. Q&A: The novel coronavirus outbreak causing COVID-19. BMC medicine. 2020 Dec;18(1):1-3. 01533-w.

Kim, J.H., Marks, F., Clemens, J.D. Looking beyond COVID-19 vaccine phase 3 trials. Nat Med. 2021; 27: 205-211.

Bragazzi, N.L., Gianfredi, V., Villarini, M., Rosselli, R.,Nasr, A., Hussein, A., et al.,Vaccines meet big data: State-of-the-Art and future prospects. From the classical 3Is (“Isolate–Inactivate–Inject”) vaccinology 1.0 to vaccinology 3.0, vaccinomics, and beyond: a historical overview. Frontiers in public health. 2018 Mar 5;6:62.DOI: 10.3389/fpubh.2018.00062.

Plotkin, S.A. Vaccines, vaccination, and vaccinology. The Journal of Infectious Diseases. 2003; 187(9): 1349–1359.

Plotkin, S.L., Plotkin, S.A., Orenstein, W.O. The history of vaccination Vaccines.3rded, 1999 Philadelphia WB Saunders (pg.1-12).

Smith, K.A. Louispasteur, the father of immunology? Frontiers in Immunology. 2012;3:68. DOI: 10.3389/fimmu.2012.00068.

Badgett, M.R., Auer, A., Carmichael, L.E., Parrish, C.R., Bull J.J. Evolutionary dynamics of viral attenuation. Journal of Virology. 2002; 76(20):10524-10529. doi:10.1128/JVI.76.20.10524-10529.2002.

Pulendran, B., Ahmed, R. Immunological mechanisms of vaccination. Nat Immunol. 2011; 12(6):509-517. doi: 10.1038/ni.2039.

Barrett, A.D.T., Stanberry, L.R. Vaccines for biodefense and emerging and neglected diseases.Elsevier Inc.,2009. Pages 285, 287-324.

Nabel, G.J. Designing tomorrow's vaccines. N Engl J Med. 2013;368(6):551-560. doi: 10.1056/NEJMra1204186.

Votter, V.,Denizer, G., Friedland, L.R., Krishnan, J., Shapiro, M. Understanding modern-day vaccines: what you need to know. Annals of Medicine. 2018; 50(2):110-120.DOI: 10.1080/07853890.2017.1407035

Dubey, K.K., Luke, G.A., Knox, C., Kumar, P., Pletschke B.I., Singh, P.K.,et al., Vaccine and antibody production in plants: developments and computational tools. Briefings in Functional Genomics. 2018;17(5):295-307. 10.1093/bfgp/ely020

Rappuoli, R. Reverse vaccinology. CurrOpinMicrobiol.2000;3(5):445-450. doi: 10.1016/s1369-5274(00)00119-3.

Florea, L., Halldorsson, B., Kohlbacher,O., Schwartz, R., Hoffman,S., Istrail, S., et al., Epitope prediction algorithms for peptide-based vaccine design. Proc IEEE Comput Soc Bioinform Conf 2. 2003; 17-26.

María, R. R., Arturo, C. J., Alicia, J. A., Paulina, M. G., Gerardo, A. O. The impact of bioinformatics on vaccine design and development. Vaccines. 2017 Sep 6;2:3-6.

Benson, D.A., Cavanaugh, M., Clark, K., Ilene K.M., Lipman, D.J., Ostell, J., et al.,GenBank Nucleic Acids Res 41 (D1). D36–D42. 2013. 1195

Kolaskar, A.S.,Tongaonkar, P.C. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Letters 1990; 276(1-2): 172-174.doi: 10.1016/0014-5793(90)80535-q.

Guan, P., Doytchinova, I.A., Zygouri, C., Flower, D.R. MHCPred: bringing a quantitative dimension to the online prediction of MHC binding. Applied Bioinformatics. 2003;2(1):63-66.

Guan, P., Doytchinova, I.A., Zygouri, C., Flower, D.R. MHCPred: A server for quantitative predictionof peptide-MHC binding. Nucleic Acids Res. 2003;31(13):3621-3624. doi:10.1093/nar/gkg510.

Hattotuwagama, C.K., Guan, P., Doytchinova, I.A., Zygouri, C., Flower, D.R. Quantitative online prediction of peptide binding to the major histocompatibility complex. J Mol Graph Model. 2004;22(3):195-207. doi: 10.1016/S1093-3263(03)00160-8.

Bhasin, M., Raghava, G.P. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes. J Biosci. 2007;32(1):31-42. doi: 10.1007/s12038-007-0004-5.

Reche, P.A., Glutting, J.P., Zhang, H., Reinherz, E.L. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics. 2004;56(6):405-419. doi: 10.1007/s00251-004-0709-7.

Xiang, Z., He, Y.Vaxign: a web-based vaccine target design program for reverse vaccinology. Procedia in Vaccinology. 2009; 1(1):23-29.

Han, H.J., Nwagwu. C., Anyim, O., Ekweremadu, C., Kim, S. COVID-19 and cancer: From basic mechanisms to vaccine development using nanotechnology. Int Immunopharmacol. 2021; 90:107247. doi: 10.1016/j.intimp.2020.107247.

Li, Y.D., Chi, W.Y., Su, J.H., Ferrall, L., Hung, C.F., Wu, T.C., et al., Coronavirus vaccine development: from SARS and MERS to COVID-19. J Biomed Sci. 2020; 27: 104

Seib, K.L., Zhao, X., Rappuoli, R. Developing vaccines in the era of genomics: a decade of reverse vaccinology. Clin Microbiol Infect. 2012;18(5):109-116. doi: 10.1111/j.1469-0691.2012.03939.x.

De Groot, A.S., Rappuoli, R. Genome-derived vaccines. Expert Rev Vaccines. 2004;3(1):59-76. doi: 10.1586/14760584.3.1.59.

Stern, L.J., Wiley, D.C. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure. 1994;2(4):245-251. doi: 10.1016/s0969-2126(00)00026-5.




How to Cite

Pushkala S, Seshayyan S, Bhajantri T. The identification of synthetic peptide vaccine candidate against SARS-CoV-2/COVID-19through reverse vaccinology approach. Biomedicine [Internet]. 2021Sep.7 [cited 2021Sep.22];41(2):375-81. Available from: