Type and frequency of genetic variants for cardiovascular riskin patients with type 2 diabetes mellitus


  • Mihaleva Ivelina
  • Mincheva Maria
  • Hristova-Savova Mariela
  • Petkova Veronika
  • Nikolov Rumen
  • Tzvetanka Markova
  • Andreeva-Gateva Pavlina
  • Ivanka Dimova




Type 2 diabetes mellitus, genetic predisposition, cardiovascular risk, fibrinogen mutation


Introduction and Aim:Type 2 diabetes mellitus (T2DM) is associated with a wide range of cardiovascular diseases that comprise the largest cause of both morbidity and mortality for the diabetic patients.  The aim is to study the allelic and genotypic frequencies of genetic variants associated with cardiovascular disease (CVD) in T2DM and to assess their contribution to the risk ofcardiovascular complications in the patients.


Materials and Methods:The genotyping was performed by usingCardiovascular disease StripAssay kit (Vienna Lab) based on polymerase chain reaction and reverse hybridization. The following mutations were studied: FV G1691A (Leiden), FV H1299R (R2),Prothrombin G20210A, Factor XIII V34L, ?-Fibrinogen ? 455 G/A, PAI-1 4G/5G, GPIIIa L33P (HPA-1), MTHFR C677T, MTHFR A1298C, ACE I/D, Apo B R3500Q, Apo E2/E3/E4. Diabetic patients were divided in 2groups: 1) patients with cardiovascular complications(N=20) and 2) patientswithout cardiovascular complications (N=16).


Results:In all diabetic patients, we found higher than population frequency for FV Leiden allele (5.5%), FVR2 allele (9.7%), PAI-1 4G allele (58.9%), ?-Fibrinogen genotype -455G/A (38.9%) andACE D/D genotype (36.1%). Statistically higher frequency was established for ?-Fibrinogen ?455 G/A genotype in the patients with cardiovascular complications compared to non-cardiovascular patients (55% vs. 18.7%).


Conclusion:We detected significantly higher frequency of ?-Fibrinogen ?455 G/A genotype in diabetic patients, especially in these with cardiovascular disease. Based on its pro-inflammatory role and its connection to possiblethrombotic events, we assumed that patients would benefit from anti-inflammatory treatment.

Author Biographies

Mihaleva Ivelina

Depatment of Pharmacology and Toxicology, Medical University Sofia, Bulgaria

Mincheva Maria

SAGBAL “Dr Shterev”, Sofia, Bulgaria

Hristova-Savova Mariela

SAGBAL “Dr Shterev”, Sofia, Bulgaria

Petkova Veronika

Molecular Medicine Center, Medical University Sofia, Bulgaria

Nikolov Rumen

Depatment of Pharmacology and Toxicology, Medical University Sofia, Bulgaria

Tzvetanka Markova

Depatment of Pharmacology and Toxicology, Medical University Sofia, Bulgaria

Andreeva-Gateva Pavlina

Depatment of Pharmacology and Toxicology, Medical University Sofia, Bulgaria

Ivanka Dimova

Molecular Medicine Center, Medical University Sofia, Bulgaria

 Department of Medical Genetics, Medical University Sofia, Bulgaria


Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., et al.,Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes research and clinical practice. 2019;157:107843.

Gerstein, H.C. Diabetes: Dysglycaemia as a cause of cardiovascular outcomes. Nature reviews Endocrinology. 2015;11(9):508-510.

Einarson, T.R., Acs, A., Ludwig, C., Panton, U.H. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovascular diabetology. 2018;17(1):83.

Bulugahapitiya, U., Siyambalapitiya, S., Sithole, J., Idris, I. Is diabetes a coronary risk equivalent? Systematic review and meta-analysis. Diabetic medicine : a journal of the British Diabetic Association. 2009;26(2):142-148.

Ait-Oufella, H., Taleb, S., Mallat, Z., Tedgui, A. Recent advances on the role of cytokines in atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology. 2011;31(5):969-979.

Carter, A.M., Mansfield, M.W., Stickland, M.H., Grant, P.J. Beta-fibrinogen gene-455 G/A polymorphism and fibrinogen levels. Risk factors for coronary artery disease in subjects with NIDDM. Diabetes care. 1996;19(11):1265-1268.

Lam, K.S., Ma, O.C., Wat, N.M., Chan, L.C., Janus, E.D. Beta-fibrinogen gene G/A-455 polymorphism in relation to fibrinogen concentrations and ischaemic heart disease in Chinese patients with type II diabetes. Diabetologia. 1999;42(10):1250-1253.

Liew, S.C., Gupta, E.D. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. European journal of medical genetics. 2015;58(1):1-10.

Ehsani, M., Imani, A., Moravveji, A. Prevalence of factor V leiden, MTHFR C677T and MTHFR A1298C polymorphisms in patients with deep vein thrombosis in Central Iran. Molecular biology reports. 2018;45(4):621-624.

Durante, A., Peretto, G., Laricchia, A., Ancona, F., Spartera, M., Mangieri A., et al., Role of the renin-angiotensin-aldosterone system in the pathogenesis of atherosclerosis. Current pharmaceutical design. 2012;18(7):981-1004.

Hernandez, D., de la Rosa, A., Barragan, A., Barrios, Y., Salido, E., Torres, A., et al.,The ACE/DD genotype is associated with the extent of exercise-induced left ventricular growth in endurance athletes. Journal of the American College of Cardiology. 2003;42(3):527-532.

Beohar, N., Damaraju, S., Prather, A., Yu, Q.T., Raizner, A., Kleiman, N.S., et al., Angiotensin-I converting enzyme genotype DD is a risk factor for coronary artery disease. Journal of investigative medicine : the official publication of the American Federation for Clinical Research. 1995;43(3):275-280.

Morita, S.Y. Metabolism and Modification of Apolipoprotein B-Containing Lipoproteins Involved in Dyslipidemia and Atherosclerosis. Biological & pharmaceutical bulletin. 2016;39(1):1-24.

Fazio, S., Babaev, V.R., Murray, A.B., Hasty, A.H., Carter, K.J., Gleaves, L.A., et al., Increased atherosclerosis in mice reconstituted with apolipoprotein E null macrophages. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(9):4647-4652.

Dubsky, M., Jirkovska, A., Pagacova, L., Bem, R., Nemcova, A., Fejfarova, V., et al. Impact of Inherited Prothrombotic Disorders on the Long-Term Clinical Outcome of Percutaneous Transluminal Angioplasty in Patients with Diabetes. Journal of diabetes research. 2015;2015:369758.

Lodigiani, C., Ferrazzi, P., Di Micco, P., Libre, L., Genovese, S., Quaglia, I., et al., Is there a relationship between factor V Leiden and type 2 diabetes? Journal of translational medicine. 2009;7:52.

Ephraim, R.K., Awuku, Y.A., Adu, P., Ampomah, L.T., Adoba, P., Panford, S., et al.,High risk of coagulopathy among Type-2 Diabetes Mellitus clients at a municipal hospital in Ghana. Ghana medical journal. 2017;51(3):101-107.

Vaughan, D.E. PAI-1 and atherothrombosis. Journal of thrombosis and haemostasis : JTH. 2005;3(8):1879-1883.

Juhan-Vague, I., Alessi, M.C. PAI-1, obesity, insulin resistance and risk of cardiovascular events. Thrombosis and haemostasis. 1997;78(1):656-660.

Ito, S., Iwaki, S., Koike, K., Yuda, Y., Nagasaki, A., Ohkawa, R., et al., Increased plasma sphingosine-1-phosphate in obese individuals and its capacity to increase the expression of plasminogen activator inhibitor-1 in adipocytes. Coronary artery disease. 2013;24(8):642-650.

Gong, L.L., Peng, J.H., Han, F.F., Zhu, J., Fang, L.H., Wang, Y.H., et al., Association of tissue plasminogen activator and plasminogen activator inhibitor polymorphism with myocardial infarction: a meta-analysis. Thrombosis research. 2012;130(3):e43-e51.

Senchenkova, E.Y., Russell, J., Almeida-Paula, L.D., Harding, J.W., Granger, D.N. Angiotensin II-mediated microvascular thrombosis. Hypertension. 2010;56(6):1089-1095.

Pandya, V., Jain, M., Chakrabarti, G., Soni, H., Parmar, B., Chaugule, B., et al., Discovery of inhibitors of plasminogen activator inhibitor-1: structure-activity study of 5-nitro-2-phenoxybenzoic acid derivatives. Bioorganic & medicinal chemistry letters. 2011;21(19):5701-5706.

Izuhara, Y., Yamaoka, N., Kodama, H., Dan, T., Takizawa, S., Hirayama, N., et al.,A novel inhibitor of plasminogen activator inhibitor-1 provides antithrombotic benefits devoid of bleeding effect in nonhuman primates. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2010;30(5):904-912.

de Moerloose, P., Casini, A., Neerman-Arbez, M. Congenital fibrinogen disorders: an update. Seminars in thrombosis and hemostasis. 2013;39(6):585-595.

Baser, H., Can, U., Baser, S., Hidayetoglu, B.T., Aslan, U., Buyuktorun, I., et al., Serum total oxidant/anti-oxidant status, ischemia-modified albumin and oxidized-low density lipoprotein levels in patients with vitamin D deficiency. Archives of endocrinology and metabolism. 2015;59(4):318-324.

Liu, S.L., Wu, N.Q., Shi, H.W.,Dong, Q., Dong, Q., Gao, Y., et al., Fibrinogen is associated with glucose metabolism and cardiovascular outcomes in patients with coronary artery disease. Cardiovasc Diabetol 2020; 19, 36.

Luyendyk, J.P., Schoenecker, J.G., Flick, M.J. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood. 2019;133(6):511-520.




How to Cite

Ivelina M, Maria M, Mariela H-S, Petkova Veronika, Rumen N, Markova T, Pavlina A-G, Dimova I. Type and frequency of genetic variants for cardiovascular riskin patients with type 2 diabetes mellitus. Biomedicine [Internet]. 2021Sep.7 [cited 2021Sep.22];41(2):382-9. Available from: https://biomedicineonline.org/index.php/home/article/view/1042