Age and sex related variations of MRI parameters of hippocampus and amygdala in healthy humans: A cross sectional study using a small cohort

Authors

  • Siddhartha Datta
  • Sumit Chakraborty
  • Sudipta Sarkar
  • Suma Debsarma
  • Basant K. Tiwary
  • Nilkanta Chakrabarti

DOI:

https://doi.org/10.51248/.v42i2.1328

Keywords:

Human Brain MRI, aging, gender, hippocampus, amygdala

Abstract

Introduction and Aim: Aging alters limbic structure, sex and hemispheric variations with anterior-posterior dominances of which are still obscure in relation to cognition in humans.

 

Methodology: The present study included MRI coronal images for measurements of volumes [hippocampal volume (HV), amygdala volume (AV)], shapes [hippocampal angle (HA), medial distance ratio (MDR), parahippocampal angle (PHA)] and their hemispheric asymmetry indices (AI) in male and female healthy individuals of young and aged groups. The best-fitted formulae of 'volume index' (VI) and 'shape index' (SI) were evaluated for better interpretation.

 

Results: In young, males showed larger bi-hemispheric volumes and AV/HV-ratios, greater HA and MDR values with distinct hemispheric dominances and greater VI with different SI values, compared to females. Aged subjects showed lesser VI and bi-hemispheric volumes compared to young counterparts where the decrement of volumes were more in aged males resulting in same volumes and AV/HV-ratios in both aged sexes. Only aged females exhibited greater HA and MDR values with altered SI compared to young counterparts retaining the sex-specific such differences with their altered AIs. The parametric changes showed significant correlations in respective cases. PHA remained unaltered in all cases.

 

Conclusion: Sex-specific volume differences in young and volume reduction in age might associate with distinct alterations of hippocampal shapes viz. shifting of the (a) head (anterior portion) vertically compared to its horizontal position and (b) body (posterior portion) laterally toward temporal cortex, in both hemispheres. The recent findings claim further studies to unveil the cognitive variations corroborated with such limbic structural/shape alterations among sexes and ages.

Author Biographies

Siddhartha Datta

Department of Physiology, University of Calcutta, Kolkata, West Bengal, India

UGC-CPEPA Centre for “Electro-physiological and Neuro-imaging studies including Mathematical Modelling”, University of Calcutta, Kolkata, West Bengal, India

Sumit Chakraborty

Department of Radiodiagnosis, IPGME&R and SSKM Hospital, Kolkata, West Bengal, India

Sudipta Sarkar

Ex-senior resident, Department of Radiodiagnosis and IPGME & R, SSKM Hospital, Kolkata.

Suma Debsarma

Department of Applied Mathematics, University of Calcutta, Kolkata, West Bengal, India

UGC-CPEPA Centre for “Electro-physiological and Neuro-imaging studies including Mathematical Modelling”, University of Calcutta, Kolkata, West Bengal, India

Basant K. Tiwary

Department for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India

Nilkanta Chakrabarti

Department of Physiology, University of Calcutta, Kolkata, West Bengal, India

References

Cury, C., Toro, R., Cohen, F., Fischer, C., Mhaya, A., Samper-González, J., et al., Incomplete hippocampal inversion: a comprehensive MRI study of over 2000 subjects. Frontiers in neuroanatomy. 2015 22;9:160.

Gogtay, N., Nugent, III T.F., Herman, D.H., Ordonez, A., Greenstein, D., Hayashi, K.M., et al., Dynamic mapping of normal human hippocampal development. Hippocampus. 2006;16(8):664-672.

Mitchell, T.W., Mufson, E.J., Schneider, J.A., Cochran, E.J., Nissanov, J., Han, L.Y., et al., Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer's disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 2002;51(2):182-189.

Pelletier, A., Periot, O., Dilharreguy, B., Hiba, B., Bordessoules, M., Pérès, K., et al., Structural hippocampal network alterations during healthy aging: a multi-modal MRI study. Frontiers in aging neuroscience. 2013;5;5:84.

Zanchi, D., Giannakopoulos, P., Borgwardt, S., Rodriguez, C., Haller, S. Hippocampal and amygdala gray matter loss in elderly controls with subtle cognitive decline. Frontiers in aging neuroscience. 2017;7;9:50.

Csernansky, J.G., Wang, L., Swank, J., Miller, J.P., Gado, M., Mckeel, D., et al., Preclinical detection of Alzheimer's disease: hippocampal shape and volume predict dementia onset in the elderly. Neuroimage. 2005;25(3):783-792.

Fjell, A.M., Walhovd, K.B., Fennema-Notestine, C., McEvoy, L.K., Hagler, D.J., Holland, D., et al., One-year brain atrophy evident in healthy aging. Journal of Neuroscience. 2009;29(48):15223-15231.

Uribe, C., Segura, B., Baggio, H.C., Campabadal, A., Abos, A., Compta, Y., et al., Differential progression of regional hippocampal atrophy in aging and Parkinson’s disease. Frontiers in aging neuroscience. 2018;10:325.

La Joie, R., Fouquet, M., Mézenge, F., Landeau, B., Villain, N., Mevel, K., et al., Differential effect of age on hippocampal subfields assessed using a new high-resolution 3T MR sequence. Neuroimage. 2010;53(2):506-514.

Li, X., Li, Q., Wang, X., Li, D., Li, S. Differential age-related changes in structural covariance networks of human anterior and posterior hippocampus. Frontiers in physiology. 2018;9:518.

Shing, Y.L., Rodrigue, K.M., Kennedy, K.M., Fandakova, Y., Bodammer, N., Werkle-Bergner, M., et al., Hippocampal subfield volumes: age, vascular risk, and correlation with associative memory. Frontiers in aging neuroscience. 2011 4;3:2.

Pantel, J., Kratz, B., Essig, M., Schröder, J. Parahippocampal volume deficits in subjects with aging-associated cognitive decline. American Journal of Psychiatry. 2003 Feb 1;160(2):379-382.

Datta, S., Sarkar, S., Chakraborty, S., Mulpuru, S.K., Basu, S., Tiwary, B.K., et al., MRI characterization of temporal lobe epilepsy using rapidly measurable spatial indices with hemisphere asymmetries and gender features. Neuroradiology. 2015;57(9):873-886.

Haario, H., Laine, M., Mira, A., Saksman, E. DRAM: efficient adaptive MCMC. Statistics and computing. 2006 Dec;16(4):339-354.

Soetaert, K., Petzoldt, T. Inverse modelling, sensitivity and Monte Carlo analysis in R using package FME. Journal of statistical software. 2010 Feb 2;33:1-28.

Perlaki, G., Orsi, G., Plozer, E., Altbacker, A., Darnai, G., Nagy, S.A., et al., Are there any gender differences in the hippocampus volume after head-size correction? A volumetric and voxel-based morphometric study. Neuroscience letters. 2014 Jun 6;570:119-123.

Li, W., van Tol, M.J., Li, M., Miao, W., Jiao, Y., Heinze, H.J., et al., Regional specificity of sex effects on subcortical volumes across the lifespan in healthy aging. Human brain mapping. 2014;35(1):238-247.

Hamann, S. Sex differences in the responses of the human amygdala. The Neuroscientist. 2005 11(4):288-293.

Walton, E., Cecil, C.A., Suderman, M., Liu, J., Turner, J.A., Calhoun, V., et al., Longitudinal epigenetic predictors of amygdala: hippocampus volume ratio. Journal of Child Psychology and Psychiatry. 2017 58(12):1341-1350.

Zeidman, P., Maguire, E.A. Anterior hippocampus: the anatomy of perception, imagination and episodic memory. Nature Reviews Neuroscience. 2016 17(3):173-182.

Rogers, B.P., Sheffield, J.M., Luksik, A.S., Heckers, S. Systematic error in hippocampal volume asymmetry measurement is minimal with a manual segmentation protocol. Frontiers in neuroscience. 2012;6:179.

Armstrong, N.M., An, Y., Beason-Held, L., Doshi, J., Erus, G., Ferrucci, L., et al., Sex differences in brain aging and predictors of neurodegeneration in cognitively healthy older adults. Neurobiology of aging. 2019;81:146-156.

Mueller, S.G., Stables, L., Du, A.T., Schuff, N., Truran, D., Cashdollar, N., et al., Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4 T. Neurobiology of aging. 2007;28(5):719-726.

Frisoni, G.B., Ganzola, R., Canu, E., Rüb, U., Pizzini, F.B., Alessandrini, F., et al., Mapping local hippocampal changes in Alzheimer's disease and normal ageing with MRI at 3 Tesla. Brain. 2008;131(12):3266-3276.

West, M.J. Regionally specific loss of neurons in the aging human hippocampus. Neurobiology of aging. 1993;14 (4):287-293.

Downloads

Published

2022-05-01

How to Cite

1.
Datta S, Chakraborty S, Sarkar S, Debsarma S, Tiwary BK, Chakrabarti N. Age and sex related variations of MRI parameters of hippocampus and amygdala in healthy humans: A cross sectional study using a small cohort. Biomedicine [Internet]. 2022 May 1 [cited 2022 Nov. 27];42(2):348-5. Available from: https://biomedicineonline.org/home/article/view/1328

Issue

Section

Original Research Articles

Plum Analytics