Aggregatibacter actinomycetemcomitans: The virulence factors and relation to persistence biofilm formation

Authors

  • Syakir Syahiran
  • Wan Rohani Wan Taib
  • Norzawani Jaffar

DOI:

https://doi.org/10.51248/.v40i4.309

Keywords:

Periodontal disease, Aggregatibacter actinomycetemcomitans, biofilm, virulence factors, virulence genes

Abstract

Periodontitis is an infectious and inflammatory condition that is associated with subgingival biofilms in tooth-supporting tissues. Among the several hundred isolated organisms in the oral cavity, one of the most isolated bacteria from infected periodontal pockets are Aggregatibacter actinomycetemcomitans. It is a Gram-negative, facultative anaerobic bacillus that causes juvenile (localized aggressive periodontitis) and adolescent periodontal diseases. The development of biofilms is an essential factor in pathogenesis for A. actinomycetemcomitans. The early attachment of A. actinomycetemcomitans to abiotic surfaces relies on its protein-like fimbriae. This organism's ability to form tenacious biofilms can determine its survival and progression. A. actinomycetemcomitans, a pathogen not solely in periodontal but also involve in some systemic infections. This species has several virulence factors and genes that contribute to its oral cavity survival and, worst of all, cause bone resorption and tooth loss. Genetic diversity between the different A. actinomycetemcomitans isolates are great, and their ability to express and release virulence factors varies. In this review article, we discuss about the potential virulence factors and candidates genes for A. actinomycetemcomitans and their roles within periodontal disease by revealing their functional biology in facilitating attachment to oral surfaces, hindering protection of the host and causing inflammation and degradation of tissue.

Author Biographies

Syakir Syahiran

Faculty of Health Science, Gong Badak Campus, Universiti Sultan Zainal Abidin (UniSZA), Kuala Terengganu, Terengganu Darul Iman, Malaysia

Wan Rohani Wan Taib

Faculty of Health Science, Gong Badak Campus, Universiti Sultan Zainal Abidin (UniSZA), Kuala Terengganu, Terengganu Darul Iman, Malaysia

Norzawani Jaffar

Faculty of Health Science, Gong Badak Campus, Universiti Sultan Zainal Abidin (UniSZA), Kuala Terengganu, Terengganu Darul Iman, Malaysia

References

Global Burden of Disease Study. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016; 2016; 390.

Faveri, M., Figueiredo, L. C., Duarte, P. M., Mestnik, M. J., Mayer, M. P. A., Feres, M. Microbiological profile of untreated subjects with localized aggressive periodontitis. J Clin Periodontol 2009; 36(9): 739-749.

Malik, R., Changela, R., Krishan, P., Gugnani, S., Bali, D. Virulence factors of Aggregatibacter actinomycetemcomitans - A status update. J Int Clin Dent Res Organ 2015; 7(2): 137-145.

Nørskov-Lauritsen, N. and Kilian, M. Reclassification of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, Haemophilus paraphrophilus and Haemophilus segnis as Aggregatibacter actinomycetemcomitans gen. nov., comb. nov., Aggregatibacter aphrophilus comb. nov. and Aggregatibacter segnis comb. nov., and emended description of Aggregatibacter aphrophilus to include V factor-dependent and V factor-independent isolates. Int J Syst Evol Microbiol 2006; 56(Pt 9): 2135-2146.

Hernández, M., Dutzan, N., García-Sesnich, J., Abusleme, L., Dezerega, A., Silva, N. et al.,. Host-pathogen interactions in progressive chronic periodontitis. J Dent Res 2011; 90(10): 1164-1170.

Haubek, D. The highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans: evolutionary aspects, epidemiology and etiological role in aggressive periodontitis. APMIS Suppl. 2010; (130): 1-53.

Cagnani, A., Barros, A. Md. S., Sousa, L.L.A. de, Zanin, L., Bergamaschi, Cd. C., Peruzzo, D. C. et al., Periodontal disease as a risk factor for aspiration pneumonia: a systematic review. Biosci. J. 2016; 32(3):813-821.

Kholy, K. E., Genco, R. J., van Dyke, T. E. Oral infections and cardiovascular disease. Trends Endocrinol Metab 2015; 26(6): 315-321.

Mager, D. L., Haffajee, A. D., Devlin, P. M., Norris, C. M., Posner, M. R., Goodson, J. M. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med. 2005; 3:27.

Kawamoto, D., Ando-Suguimoto, E. S., Bueno-Silva, B., DiRienzo, J. M., Mayer, M.P.A. Alteration of Homeostasis in Pre-osteoclasts Induced by Aggregatibacter actinomycetemcomitans CDT. Front Cell Infect Microbiol 2016; 6: 33.

Hosokawa, Y., Hosokawa, I., Shindo, S., Ozaki, K., Matsuo, T. Calcitriol Suppressed Inflammatory Reactions in IL-1?-Stimulated Human Periodontal Ligament Cells. Inflammation. 2015; 38(6): 2252-2258.

Kachlany, S. C., Planet, P. J., Desalle, R., Fine, D. H., Figurski, D. H., Kaplan, J. B. flp-1, the first representative of a new pilin gene subfamily, is required for non-specific adherence of Actinobacillus actinomycetemcomitans. Mol Microbiol 2001; 40(3): 542-554.

Kaplan, J. B., Velliyagounder, K., Ragunath, C., Rohde, H., Mack, D., Knobloch, J.K.M., et al.,. Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J Bacteriol 2004; 186(24): 8213-8220.

Izano, E. A., Sadovskaya, I., Wang, H., Vinogradov, E., Ragunath, C., Ramasubbu, N., et al.,. Poly-N-acetylglucosamine mediates biofilm formation and detergent resistance in Aggregatibacter actinomycetemcomitans. Microb Pathog. 2008; 44(1): 52-60.

Dubbs, J. M., Mongkolsuk, S. Peroxide-sensing transcriptional regulators in bacteria. J Bacteriol 2012; 194(20): 5495-5503.

McLaughlin, R. A., Hoogewerf, A. J. Interleukin-1beta-induced growth enhancement of Staphylococcus aureus occurs in biofilm but not planktonic cultures. Microb Pathog 2006; 41(2-3): 67-79.

Kaplan, J. B., Perry, M. B., MacLean, L. L., Furgang, D., Wilson, M. E., Fine, D. H. Structural and genetic analyses of O polysaccharide from Actinobacillus actinomycetemcomitans serotype f. Infect Immun 2001; 69(9): 5375-5384.

Umeda, J. E., Longo, P. L., Simionato, M.R.L., Mayer, M.P.A. Differential transcription of virulence genes in Aggregatibacter actinomycetemcomitans serotypes. J Oral Microbiol 2013; 5.

Haubek, D., Johansson, A. Pathogenicity of the highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans and its geographic dissemination and role in aggressive periodontitis. J Oral Microbiol 2014; 6.

Pinheiro, E. T., Kawamoto, D., Ota-Tsuzuki, C., Almeida, L.R.S., Nunes, A.C.R., Longo, P. L., et al., Analysis of genotypic variation in genes associated with virulence in Aggregatibacter actinomycetemcomitans clinical isolates. J Periodont Res 2011; 46(3): 310-317.

Rose, J. E., Meyer, D. H. and Fives-Taylor, P. M. Aae, an autotransporter involved in adhesion of Actinobacillus actinomycetemcomitans to epithelial cells. Infect Immun 2003; 71(5): 2384-2393.

Asakawa, R., Komatsuzawa, H., Kawai, T., Yamada, S., Goncalves, R. B., Izumi, S. et al.,. Outer membrane protein 100, a versatile virulence factor of Actinobacillus actinomycetemcomitans. Mol Microbiol 2003; 50(4): 1125-1139.

Ruiz, T., Lenox, C., Radermacher, M., Mintz, K. P. Novel surface structures are associated with the adhesion of Actinobacillus actinomycetemcomitans to collagen. Infect Immun 2006; 74(11): 6163-6170.

Tang, G., Kitten, T., Munro, C. L., Wellman, G. C., Mintz, K. P. EmaA, a potential virulence determinant of Aggregatibacter actinomycetemcomitans in infective endocarditis. Infect Immun 2008; 76(6): 2316-2324.

Yilmaz, O., Young, P. A., Lamont, R. J., Kenny, G. E. Gingival epithelial cell signalling and cytoskeletal responses to Porphyromonas gingivalis invasion. Microbiology (Reading, Engl ) 2003; 149(Pt 9): 2417-2426.

Lamont, R. J., Yilmaz, O. In or out: the invasiveness of oral bacteria. Periodontol 2000. 2002; 30(1): 61-69.

Kümmerer, K., Henninger, A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin Microbiol Infect 2003; 9(12):1203-1214.

Auerbach, E. A., Seyfried, E. E., McMahon, K. D. Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Res 2007; 41(5): 1143-1151.

Linhartová, I., Bumba, L., Mašín, J., Basler, M., Osi?ka, R., Kamanová, J., et al., RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 2010; 34(6): 1076-1112.

Henderson, B., Ward, J. M., Ready, D. Aggregatibacter (Actinobacillus) actinomycetemcomitans: a triple A* periodontopathogen? Periodontol 2000 2010; 54(1): 78-105.

Kachlany, S.C. Aggregatibacter actinomycetemcomitans leukotoxin: from threat to therapy. J Dent Res 2010; 89(6): 561-570.

Gallant, C. V., Sedic, M., Chicoine, E. A., Ruiz, T., Mintz, K. P. Membrane morphology and leukotoxin secretion are associated with a novel membrane protein of Aggregatibacter actinomycetemcomitans. J Bacteriol 2008; 190(17): 5972-5980.

Tan, K. S., Song, K. P., Ong, G. Cytolethal distending toxin of Actinobacillus actinomycetemcomitans. Occurrence and association with periodontal disease. J Periodont Res 2002; 37(4): 268-272.

Smith, J. L., Bayles, D. O. The contribution of cytolethal distending toxin to bacterial pathogenesis. Crit Rev Microbiol. 2006; 32(4): 227-248.

Ando-Suguimoto, E. S., da Silva, M. P., Kawamoto, D., Chen, C., DiRienzo, J. M., Mayer, M.P.A. The cytolethal distending toxin of Aggregatibacter actinomycetemcomitans inhibits macrophage phagocytosis and subverts cytokine production. Cytokine. 2014; 66(1): 46-53.

Park, O. J., Cho, M. K., Yun, C. H., Han, S. H. Lipopolysaccharide of Aggregatibacter actinomycetemcomitans induces the expression of chemokines MCP-1, MIP-1?, and IP-10 via similar but distinct signaling pathways in murine macrophages. Immunobiology 2015; 220(9): 1067-1074.

Bodet, C., Chandad, F., Grenier, D. Anti-inflammatory activity of a high-molecular-weight cranberry fraction on macrophages stimulated by lipopolysaccharides from periodontopathogens. J Dent Res. 2006; 85(3): 235-239.

Newnham, J. P., Shub, A., Jobe, A. H., Bird, P. S., Ikegami, M., Nitsos, I., et al., The effects of intra-amniotic injection of periodontopathic lipopolysaccharides in sheep. Am J Obstet Gynecol. 2005; 193(2): 313-321.

Arce, R. M., Barros, S. P., Wacker, B., Peters, B., Moss, K., Offenbacher, S. Increased TLR4 expression in murine placentas after oral infection with periodontal pathogens. Placenta. 2009; 30(2): 156-162.

Offenbacher, S., Jared, H. L., O'Reilly, P. G., Wells, S. R., Salvi, G. E., Lawrence, H. P. et al., Potential pathogenic mechanisms of periodontitis associated pregnancy complications. Ann Periodontol 1998; 3(1): 233-250.

Kayal, R. A. The role of osteoimmunology in periodontal disease. Biomed Res Int 2013; 2013: 639368.

Goulhen, F., Grenier, D., Mayrand, D. Oral Microbial Heat-shock Proteins and Their Potential Contributions to Infections. Critical Reviews in Oral Biology & Medicine 2003; 14(6): 399-412.

Barreto, A., Gonzalez, J. M., Kabingu, E., Asea, A., Fiorentino, S. Stress-induced release of HSC70 from human tumors. Cellular Immunology. 2003; 222(2): 97-104.

Løkensgard, I., Bakken, V., Schenck, K. Heat shock response in Actinobacillus actinomycetemcomitans. FEMS Immunol Med Microbiol. 1994; 8(4): 321-328.

Goulhen, F., Grenier, D., Mayrand, D. Oral microbial heat-shock proteins and their potential contributions to infections. Crit Rev Oral Biol Med. 2003; 14(6): 399-412.

Fink, D. L., Green, B. A., St. Geme, J. W. The Haemophilus influenzae Hap autotransporter binds to fibronectin, laminin, and collagen IV. Infect Immun. 2002; 70(9): 4902-4907.

Ouhara, K., Komatsuzawa, H., Shiba, H., Uchida, Y., Kawai, T., Sayama, K., et al., Actinobacillus actinomycetemcomitans outer membrane protein 100 triggers innate immunity and production of beta-defensin and the 18-kilodalton cationic antimicrobial protein through the fibronectin-integrin pathway in human gingival epithelial cells. Infect Immun. 2006; 74(9): 5211-5220.

Azari, F., Radermacher, M., Mintz, K. P., Ruiz, T. Correlation of the amino-acid sequence and the 3D structure of the functional domain of EmaA from Aggregatibacter actinomycetemcomitans. J Struct Biol. 2012; 177(2): 439-446.

Smith, K. P., Ruiz, T. and Mintz, K. P. Inner-membrane protein MorC is involved in fimbriae production and biofilm formation in Aggregatibacter actinomycetemcomitans. Microbiology (Reading, Engl ) 2016; 162(3): 513-525.

Kajiya M., Komatsuzawa, H., Papantonakis, A., Seki, M., Makihira, S., Ouhara, K., et al., Aggregatibacter actinomycetemcomitans Omp29 is associated with bacterial entry to gingival epithelial cells by F-actin rearrangement. PLoS ONE 2011; 6(4): e18287.

Downloads

Published

2021-01-01

How to Cite

1.
Syahiran S, Wan Taib WR, Jaffar N. Aggregatibacter actinomycetemcomitans: The virulence factors and relation to persistence biofilm formation. Biomedicine [Internet]. 2021 Jan. 1 [cited 2024 Mar. 29];40(4):429-35. Available from: https://biomedicineonline.org/index.php/home/article/view/309

Plum Analytics