Effect of Solanum lycopersicum leaf extracts against larvicidal activity of Aedes aegypti L.

Authors

  • Nityasree B. R.
  • Chalannavar R. K.
  • Ghosh S. K.
  • Divakar M. S.
  • Sowmyashree K.

DOI:

https://doi.org/10.51248/.v40i4.321

Keywords:

Solanum lycopersicum, Aedes aegypti, phytochemicals, GC-MS, larvicidal activity

Abstract

Introduction: Aedes mosquitoes are responsible for transmitting various life-threatening diseases all over the world and created a burden to society. Control of mosquito vectors is the key challenge to avoid disease transmission. In this regard, the present work is focused to utilize the agronomical waste of Solanum lycopersicum leaf extracts and to evaluate the larvicidal activity against Aedes aegypti.

Methods: The qualitative and quantitative screening of S. lycopersicum leaf extracts were carried out. The larvicidal activity of different concentrations were assessed against 3rd instar Ae. aegypti and to determine the morphological effects. The chemical constituents were analysed by gas chromatography coupled with mass spectroscopy (GC-MS).

Results: The preliminary phytochemical screening of S. lycopersicum leaf extracts revealed the presence of alkaloids, saponins, phenols and flavonoids. The methanol extract exhibited strong larvicidal activity at 48h treatment with an LC50 value of 20.323mg/ml. The morphological changes revealed that abnormal movement and coiling of treated larvae at 24h. Furthermore, severe damage was noticed in the digestive and respiratory tract of Ae. aegypti larvae at 48h, later on complete mortality was observed. The GC-MS analysis of methanol extract showed chemical constituents such as phytol acetate (42.66%), neophytadiene (29.38%) and other minor compounds.

Conclusion: Based on the results, it can be concluded that methanolic leaf extract of S. lycopersicum could be an alternative source to control mosquito vectors and further investigation is strongly suggested in order to utilise this source in many disease-endemic areas.

Author Biographies

Nityasree B. R.

Research scholar,  Department of Applied Botany, Mangalore University, Mangalagangothri Karnataka, India 574 199

Chalannavar R. K.

Professor and Chairman, Department of Applied Botany, Mangalore University, Mangalagangothri Karnataka, India 574 199

Ghosh S. K.

ICMR-National Institute of Malaria Research, Field Unit, Bengaluru, Karnataka, India 562 110

Divakar M. S.

Research scholar, Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri,Karnataka India 574 199

Sowmyashree K.

Department of Applied Botany, Mangalore University, Mangalagangothri Karnataka, India 574 199

References

World Health Organization. Vector-borne Diseases. 2002 March [2 March 2002]. Available from: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases.

Patel, E. K., Gupta, A., Oswal, R. J. A review on: mosquito repellent methods. Int. J. Pharm. Biol. Sci. 2012; 2: 310-317.

Madhumathy, A. P., Aivazi, A. A., Vijayan, V. A. Larvicidal efficacy of Capsicum annum against Anopheles stephensi and Culex quinquefasciatus. J. Vector Borne Dis. 2007; 44: 223-226.

VDCI (Vector Disease Control International). Mosquito-Borne Disease Year in Review. February 2018 [13 February 2018]. Available from: http://www.vdci.net/blog/2017-year-in-review-mosquito-borne-disease.

Centre for Disease Control and Prevention (CDC). Dengue and the Aedes aegypti mosquito fact sheet. Available from: http://www.vdci.net/blog/2017-year-in-review-mosquito-borne-disease.

Sharma, A., Kumar, S., Tripathi, P. Evaluation of the larvicidal efficacy of five indigenous weeds against an Indian strain of dengue vector, Aedes aegypti L. (Diptera: Culicidae). J. Parasitol. Res. 2016; 1-8. doi:10.1155/2016/2857089.

Elimam, A. M., Elmalik, K. H., Ali, F. S. Efficacy of leaves extract of Calotropis procera Ait. (Asclepiadaceae) in controlling Anopheles arabiensis and Culex quinquefasciatus mosquitoes. Saudi J. Biol. Sci. 2009; 16: 95-100. doi: 10.1016/j.sjbs.2009.10.007.

Sharma, V. P. Health hazards of mosquito repellents and safe alternatives. Curr. Sci. 2001; 10: 341-343.

Ghosh, A., Chowdhury, N., Chandra, G. Plant extracts as potential mosquito larvicides. Indian J. Med. Res. 2012; 135: 581-598. PMID: 22771587.

Lobo, K. D., Soares-da-Silva, J., Silva, M. C., Tadei, W. P., Polanczyk, R. A., Pinheiro, V. C. Isolation and molecular characterization of Bacillus thuringiensis found in soils of the Cerrado region of Brazil, and their toxicity to Aedes aegypti larvae. Rev Bras Entomol. 2018; 62: 5-12. doi: 10.1016/j.rbe.2017.11.004.

Vitta, A., Thimpoo, P., Meesil, W., Yimthin, T., Fukruksa, C., Polseela, R., et al. Larvicidal activity of Xenorhabdus and Photorhabdus bacteria against Aedes aegypti and Aedes albopictus. Asian Pac J Trop Biomed. 2018; 1: 31-36. doi: 10.4103/2221-1691.221134.

Afreen, H., Toufiq-Ul Amin, M., Siddiqul Islam, S. P., Salam, R. In vitro phytochemical analysis and cytotoxic assay of leaves of Solanum lycopersicum Linn by brine shrimp bioassay. J. innov. pharm. biol. sci. 2016; 3: 81-85.

Mahadev, R., Ramakrishnaiah, H., Krishna, V., Deepalakshmi, A. P., Kumar, N. Cytotoxic activity of methanolic extracts of Solanum erianthum D. Don. Int J Pharm Pharm Sci. 2015; 7: 106-8.

Molan, A. L., Rathi, M. H., Abdulwahab, D. A. Larvicidal and pupicidal activity of water extracts from tomato pomaces and their components against culex quinquefasciatus (diptera: culicidae) under laboratory conditions. World j pharm sci. 2016; 5: 163-171. doi:10.20959/wjpps20165-6657.

Magioli, C., Mansur, E. Eggplant (Solanum melongena L.): tissue culture, genetic transformation and use as an alternative model plant. Acta Bot. Bras. 2005; 19: 139-148. doi:10.1590/S0102-33062005000100013.

Shah, V. V., Shah, N. D., Patrekar, P. V. Medicinal plants from solanaceae family. Research J. Pharm. and Tech. 2013; 6: 143-151.

Banu, K. S., Cathrine, L. General techniques involved in phytochemical analysis. Int. j. adv. res. chem. sci. 2015; 2: 25-32.

Harborne, J. B. Phytochemical Methods London Chapman and Hall, Ltd. 1973; 49-188.

Taga, M. S., Miller, E. E., Pratt, D. E. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem.' Soc. 1984; 61: 928-931. DOI:10.1007/BF02542169.

Sheik, S., Chandrashekar, K. R. Antimicrobial and antioxidant activities of Kingiodendron pinnatum (DC.) Harms and Humboldtia brunonis Wallich: endemic plants of the Western Ghats of India. J Natl Sci Found of Sri Lanka. 2014; 3: 307-313. http://dx.doi.org/10.4038/jnsfsr.v42i4.7729.

World Health Organization. Guidelines for laboratory and field testing of mosquito larvicides Geneva: World Health Organization. 2005. WHO/CDS/WHOPES/GCDPP/2005.13.

Wang, Z., Perumalsamy, H., Wang, X., Ahn, Y, J. Toxicity and possible mechanisms of action of honokiol from Magnolia denudata seeds against four mosquito species. Sci. Rep. 2019; 23: 1-9. doi:10.1038/s41598-018-36558-y.

Chalannavar, R. K., Baijnath, H., Odhav, B. Chemical constituents of the essential oil from Syzygium cordatum (Myrtaceae). Afr. J. Biotechnol. 2011; 10: 2741-2745. doi:10.5897/AJB10.1932.

Raman, B. V., Samuel, L. A., Saradhi, M. P., Rao, B. N., Krishna, N. V., Sudhakar, M., Radhakrishnan, T. M. Antibacterial, antioxidant activity and GC-MS analysis of Eupatorium odoratum. Asian J Pharm Clin Res. 2012; 5: 99-106.

Al-Marzoqi, A. H., Hadi, M. Y., Hameed, I. H. Determination of metabolites products by Cassia angustifolia and evaluate antimicrobial activity. J. Pharmacognosy Phytother. 2016; 8: 25-48. doi:10.5897/JPP2015.0367.

Wang, Y. N., Wang, H. X., Shen, Z. J., Zhao, L. L., Clarke, S. R., Sun, J. H., et al. Methyl palmitate, an acaricidal compound occurring in green walnut husks. J. Econ. Entomol. 2009; 102: 196-202. doi:10.1603/029.102.0128.

Maragatham, M., Joseph, D. Larvicidal evaluation of aged and fresh leaf extract of Solanum lycopersicum esculentum. Int. J. Mosq. Res. 2019; 6: 57-60.

Silva, P. T., Santos, H. S., Teixeira, A. M., Bandeira, P. N., Holanda, C. L., Vale, J. P, et al. Seasonal variation in the chemical composition and larvicidal activity against Aedes aegypti of essential oils from Vitex gardneriana Schauer. S. Afr. J. Bot. 2019; 1: 329-32. doi: 10.1016/j.sajb.2019.04.03.

Kovendan, K. & Murugan, K. Effect of medicinal plants on the mosquito vectors from the different agro-climatic regions of Tamil Nadu, India. Adv. Environ. Biol. 2011; 5: 335-344.

Chowdhury, N., Bhattacharjee, I., Laskar, S., Chandra, G. Efficacy of Solanum villosum Mill. (Solanaceae: Solanales) as a biocontrol agent against fourth instar larvae of Culex quinquefasciatus Say. Turk J Zool. 2007; 31: 365-370.

Raghavendra, K., Singh, S. P., Subbarao, S. K., Dash, A. P. Laboratory studies on mosquito larvicidal efficacy of aqueous & hexane extracts of dried fruit of Solanum nigrum Linn. Indian J. Med. Res. 2009; 130: 74-77.

Kiran, R., Kekuda, T. R., Kumar, H. G., Hosetti, B. B., Krishnaswamy, K. Biological activities of Sarcanthus pauciflorus. J. Appl. Pharm. Sci. 2013; 3: 105-110. doi: 10.7324/JAPS.2013.3720.

Viswan, A., Pushapalatha, E. Larvicidal effect of selected plant extracts on Aedes aegypti L. and Culex quinquefasciatus say. Int. educ. appl. sci. res. j. 2020; 5:1-2.

Pavela, R., Maggi, F., Iannarelli, R., Benelli, G. Plant extracts for developing mosquito larvicides: from laboratory to the field, with insights on the modes of action. Acta Trop. 2019; 193: 236-271. doi: 10.1016/j.actatropica.2019.01.019.

Velu, K., Elumalai, D., Hemalatha, P., Babu, M., Janaki, A., Kaleena, P. K. Phytochemical screening and larvicidal activity of peel extracts of Arachis hypogaea against chikungunya and malarial vectors. Int. j. mosq. res. 2015; 2: 01-08.

Ragavendran, C., Mariappan, T., Natarajan, D. Larvicidal, histopathological efficacy of Penicillium daleae against larvae of Culex quinquefasciatus and Aedes aegypti plus biotoxicity on Artemia nauplii a non-target aquatic organism. Front Pharmacol. 2017; 8: 773. doi:10.3389/fphar.2017.00773.

Yadav, R., Tyagi, V., Tikar, S. N., Sharma, A. K., Mendki, M. J, Jain, A. K., Sukumaran, D. Differential larval toxicity and oviposition altering activity of some indigenous plant extracts against dengue and chikungunya vector Aedes albopictus. J Arthropod Borne Dis. 2014; 8: 174-185. PMID: 26114131.

Downloads

Published

2021-01-01

How to Cite

1.
B. R. N, R. K. C, S. K. G, M. S. D, K. S. Effect of Solanum lycopersicum leaf extracts against larvicidal activity of Aedes aegypti L. Biomedicine [Internet]. 2021Jan.1 [cited 2021Feb.27];40(4):467- 473. Available from: https://biomedicineonline.org/index.php/home/article/view/321

Issue

Section

Original Research Articles