Risk of fractures in patients with osteoporosis associated with chronic heart failure and type 2 diabetes mellitus
DOI:
https://doi.org/10.51248/.v43i5.3374Keywords:
Chronic heart failure, tumor necrosis factor-alpha, type 2 diabetes mellitus, postmenopausal women, loop diureticsAbstract
Introduction and Aim: Although the pathophysiological processes underlying the association between congestive heart failure (CHF) and osteoporosis (OP) are unknown, there is evidence that several changes observed in CHF may play a role in bone loss. The objective of the study is to examine the impact of soluble TNF-alpha receptor 1 (sR1-TNF-alpha) and soluble TNF-alpha receptor 2 (sR2-TNF-alpha) on the risk of fractures in patients with OP associated with CHF and type 2 diabetes mellitus (T2DM).
Methods: This study included 178 women aged 50–65 years, divided into four groups. Group 1 consisted of 48 women diagnosed with HF and T2DM. Group 2 included 93 patients with OP and HF. Group 3 consisted of 37 women with OP, HF, and T2DM.
Results: The levels of sR1-TNF-alpha and sR2-TNF-alpha in patient groups 1 through 3 were significantly higher than in the control group (p<0.01). Furthermore, it was demonstrated that patients in group 3 had much greater levels of both receptors than those in groups 1 and 2.
Conclusion: High levels of sR1-TNF-alpha and sR2-TNF-alpha in postmenopausal women with CHF are associated with an increased risk of a poor outcome during OP.
References
Ge, G., Li, J., Wang, Q. Heart failure and fracture risk: a meta-analysis. Osteoporos Int. 2019;30(10):1903-1909.
Abe, H., Semba, H., Takeda, N. The roles of hypoxia signaling in the pathogenesis of cardiovascular diseases. J Atheroscler Thromb. 2017;24(9):884-894.
Arnett, T. R., Gibbons, D. C., Utting, J. C., Orriss, I. R., Hoebertz, A., Rosendaal, M., et al., Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol. 2003;196(1):2-8.
Mo, C., Ke, J., Zhao, D., Zhang, B. Role of the renin-angiotensin-aldosterone system in bone metabolism. J Bone Miner Metab. 2020;38(6):772-779.
Beavan, S., Horner, A., Bord, S., Ireland, D., Compston, J. Colocalization of glucocorticoid and mineralocorticoid receptors in human bone. J Bone Miner Res. 2001;16(8):1496-1504.
Patel, R. B., Fonarow, G. C., Greene, S. J., Zhang, S., Alhanti, B., DeVore, A. D., et al., Kidney function and outcomes in patients hospitalized with heart failure. J Am Coll Cardiol. 2021;78(4):330-343.
Herrmann, M., Engelke, K., Ebert, R., Müller-Deubert, S., Rudert, M., Ziouti, F., et al., Interactions between muscle and bone-where physics meets biology. Biomolecules. 2020; 10(3):432.
Clynes, M. A., Gregson, C. L., Bruyère, O., Cooper, C., Dennison, E. M. Osteosarcopenia: where osteoporosis and sarcopenia collide. Rheumatology (Oxford). 2021;60(2):529-537.
Murzaevich, M. S., Imanalieva, F., Uulu, C. M., Tagaev, T., Yethindra, V., Arstanbekovna, M. Prevalence of osteopenia and osteoporosis in the Kyrgyz Republic. Indian J Forensic Med Toxicol. 2020;14(3):2016-2020.
Tagaev, T., Imanalieva, F., Mamatov, S., Vityala, Y., Zhumabekova, A. Prevalence of osteopenia and osteoporosis among the population of southern Kyrgyzstan - A cross-sectional observational study. Biomedicine (India). 2021; 41(4):742-746.
Jia, J., Zhou, H., Zeng, X., Feng, S. Estrogen stimulates osteoprotegerin expression via the suppression of miR-145 expression in MG-63 cells. Mol Med Rep. 2017;15(4):1539-1546.
Pandey, A., Khan, Y. A., Kushwaha, S. S., Mohammed, F., Verma, A. Role of serum osteoprotegerin as a diagnostic indicator of primary osteoporosis in perimenopausal and postmenopausal women: An Indian Perspective. Malays Orthop J. 2018;12(1):31-35.
Aramburu-Bodas, Ó., García-Casado, B., Salamanca-Bautista, P., Guisado-Espartero, M. E., Arias-Jiménez, J. L., Barco-Sánchez, A., et al., Relationship between osteoprotegerin and mortality in decompensated heart failure with preserved ejection fraction. J Cardiovasc Med (Hagerstown). 2015; 16(6):438-443.
Hanna, A., Frangogiannis, N. G. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc Drugs Ther. 2020;34(6):849-863.
Ing, S. W., Orchard, T. S., Lu, B., LaMonte, M. J., Barbour, K. E., Cauley, J. A., et al., TNF receptors predict hip fracture risk in the WHI study and fatty acid intake does not modify this association. J Clin Endocrinol Metab. 2015;100(9):3380-3387.
Kindle, L., Rothe, L., Kriss, M., Osdoby, P., Collin-Osdoby, P. Human microvascular endothelial cell activation by IL-1 and TNF-alpha stimulates the adhesion and transendothelial migration of circulating human CD14+ monocytes that develop with RANKL into functional osteoclasts. J Bone Miner Res. 2006;21(2):193-206.
Cauley, J. A., Danielson, M. E., Boudreau, R. M., Forrest, K. Y., Zmuda, J. M., Pahor, M., et al., Inflammatory markers and incident fracture risk in older men and women: The health aging and body composition study. J Bone Miner Res. 2007; 22(7):1088-1095.
Monaco, C., Nanchahal, J., Taylor, P., Feldmann, M. Anti-TNF therapy: past, present and future. Int Immunol. 2015; 27:55-62.
Fischer, R., Marsal, J., Guttà, C., Eisler, S. A., Peters, N., Bethea, J. R., et al., Novel strategies to mimic transmembrane tumor necrosis factor-dependent activation of tumor necrosis factor receptor 2. Sci Rep. 2017;7(1):6607.
Mann, D. L. Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res. 2002;91(11):988-998.
Hamid, T., Gu, Y., Ortines, R. V., Bhattacharya, C., Wang, G., Xuan, Y. T., et al., Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation. 2009; 119(10):1386-1397.
Lim, L. S., Fink, H. A., Kuskowski, M. A., Taylor, B. C., Schousboe, J. T., Ensrud, K. E., et al., Loop diuretic use and increased rates of hip bone loss in older men: The osteoporotic fractures in men study. Archives of Internal Medicine. 2008; 168(7): 735-740.
Monden, Y., Kubota, T., Inoue, T., Tsutsumi, T., Kawano, S., Ide, T., et al., Tumor necrosis factor-alpha is toxic via receptor 1 and protective via receptor 2 in a murine model of myocardial infarction. Am J Physiol Heart Circ Physiol. 2007; 293(1):H743-H753.
Heidrich, F. E., Stergachis, A., Gross, K. M. Diuretic drug use and the risk for hip fracture. Ann Intern Med. 1991;115(1):1-6.
Corrao, G., Mazzola, P., Monzio Compagnoni, M., Rea, F., Merlino, L., Annoni, G., et al., Antihypertensive medications, loop diuretics, and risk of hip fracture in the elderly: A population-based cohort study of 81,617 Italian patients newly treated between 2005 and 2009. Drugs Aging. 2015; 32(11):927-936.
Lai, S. W., Cheng, K. C., Lin, C. L., Liao, K. F. Furosemide use and acute risk of hip fracture in older people: A nationwide case-control study in Taiwan. Geriatr Gerontol Int. 2017;17(12):2552-2558.
Rejnmark, L., Vestergaard, P., Heickendorff, L., Andreasen, F., Mosekilde, L. Loop diuretics increase bone turnover and decrease BMD in osteopenic postmenopausal women: Results from a randomized controlled study with bumetanide. J Bone Miner Res. 2006;21(1):163-170.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Biomedicine

This work is licensed under a Creative Commons Attribution 4.0 International License.
Plum Analytics