Global scenario and recent advances in molecular diagnosis and management of drug-resistant tuberculosis

Authors

  • Mohan Sannathimmappa College of Medicine and Health Sciences
  • Prashanth G College of Medicine and Health Sciences
  • Aravindakshan R All India Institute of Medical Sciences, Andhra Pradesh, India
  • Nambiar V College of Medicine and Health Sciences

DOI:

https://doi.org/10.51248/.v41i3.441

Keywords:

Drug-resistant tuberculosis, Molecular methods, Mutation, Whole-Genome Sequencing, Xpert-MTB/RIF

Abstract

Tuberculosis (TB) is one of the oldest communicable bacterial diseases, spreads predominantly by inhalation of infected respiratory droplets. It is a curable and preventable disease yet remains the leading infectious cause of human death worldwide. The TB burden is high among developing nations of Asia and Africa. Major obstacles in controlling TB are patient’s non-compliance to the anti-tubercular therapy, co-infection with Human immunodeficiency virus (HIV), low socioeconomic status, crowded living condition, inadequate rapid diagnostic testing facilities especially in resource-poor developing countries, delay in diagnosis and initiation of therapy, and the emergence of drug-resistant strains of Mycobacterium tuberculosis (MTB).  Multidrug-resistant (MDR-TB), extensively drug-resistant (XDR-TB), and total drug-resistant (TDR-TB) MTB strains are difficult to treat and are associated with frequent treatment failures and high mortality. The recent advent of molecular techniques including nucleic acid amplification tests (NAATs) and whole-genome sequencing (WGS) have significantly ameliorated the rapid detection of TB cases and drug-resistant MTB. This, in turn, enabled the early initiation of therapy and development of novel treatment plans which is crucial for the global TB elimination target. The World Health Organization (WHO) 2020 guideline prioritizes the use of newer drugs as part of all-oral regimens for the treatment of MDR-TB. Apart from the use of newer drug delivery methods, host factors including immune functions and cytokine responses as well as mycobacterial enzymatic pathways are targeted in TB drug development. Adjuvant therapy employing host-directed approaches is increasingly studied through the time-tested pathogen-targeted approach remains the mainstay in the current treatment of MDR-TB.

Author Biographies

Mohan Sannathimmappa, College of Medicine and Health Sciences

College of Medicine and Health Sciences, National University of Science and Technology, Sohar Campus, Sultanate of Oman

Prashanth G, College of Medicine and Health Sciences

Associate Professor, Dept. of Pediatrics, College of Medicine and Health Sciences, National University of Science and Technology

Aravindakshan R, All India Institute of Medical Sciences, Andhra Pradesh, India

Professor and HOD, Dept. of Community Medicine, All India Institute of Medical Sciences, Mangalagiri, Andhra Pradesh, India

Nambiar V, College of Medicine and Health Sciences

Associate Professor, Dept. of Microbiology and Immunology, College of Medicine and Health Sciences, National University of Science and Technology, Oman

References

World Health Organization Global tuberculosis report 2019. Geneva. WHO 2019. https://www.who.int/tb/publications/ global_report/en/ [Accessed on 17 October 2019].

Nguyen, T. N. A., Anton-Le Berre, V., Bañuls, A. L., Nguyen, T. V. A. Molecular diagnosis of drug-resistant tuberculosis; a literature review. Front Microbiol. 2019 Apr 16; 10: 794. doi: 10.3389/fmicb.2019.00794.

Park, M., Satta, G., Kon O. M. An update on multidrug-resistant tuberculosis?. Clin Med 2019; 19(2): 135-139. doi: 10.7861/clinmedicine.19-2-135.

Floyd, K., Glaziou, P., Zumla, A., Raviglione, M. The global tuberculosis epidemic and progress in care, prevention, and research: an overview in year 3 of the End TB era. Lancet Respir Med 2018; 6(4): 299–314. DOI: 10.1016/S2213-2600(18)30057-2.

Daley, C. L. The Global Fight Against Tuberculosis. Thorac Surg Clin. 2019 Feb; 29(1): 19-25. DOI: 10.1016/j. thorsurg.2018.09.010.

Sampaio V. D. S., Rodrigues M. G. D. A., Silva L. C. F. D., Castro D. B. D., Balieiro P. C. D. S., et al., Correction: Social, demographic, health care and co-morbidity predictors of tuberculosis mortality in Amazonas, Brazil: a multiple cause of death approach. PLOS ONE 2020;15(2): e0229749. https://doi.org/10.1371/journal.pone.0229749

Miggiano, R., Rizzi, M., Ferraris, D. M. Mycobacterium tuberculosis Pathogenesis, Infection Prevention and Treatment. Pathogens 2020; 9(5): 385. doi: 10.3390/ pathogens9050385.

Chopra, K. K, Arora, V. K., Singh, S. COVID 19 and tuberculosis. Indian Journal of Tuberculosis 2020; 67(2): 149-151. doi: 10.1016/j.ijtb.2020.06.001.

Miglioria, G. B., Tiberib, S., Zumlad, A., Petersene, E., Chakayah, J. M., Wejse, C., et al., MDR/XDR-TB management of patients and contacts: Challenges facing the new decade. The 2020 clinical update by the Global Tuberculosis Network. International Journal of Infectious Diseases 2020; 92S: S15–S25. DOI: https://doi.org/10.1016 /j.ijid.2020.01.042.

World Health Organization. Policy statement: molecular line probe assays for rapid screening of patients at risk of multi-drug resistant tuberculosis (MDR-TB). WHO, 2008. Accessed on 1st July 2017. Available online: http://www.who.int/tb/features_archive/policy_statement.pdf?ua=1

World Health Organization Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children: policy update. Geneva: WHO, 2013. www.ncbi.nlm.nih.gov/books/ NBK258608/ [Accessed 8 February 2019].

Dorman, S. E., Schumacher, S. G., Alland, D., Nabeta, P., Armstrong, D. T., King, B., et al., Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicenter diagnostic accuracy study. Lancet Infect Dis 2018; 18(1): 76-84. doi: 10.1016/S1473-3099(17)30691-6.

Shete, P. B., Farr, K., Strnad, L., Gray, C. M., Cattamanchi, A. Diagnostic accuracy of TB-LAMP for pulmonary tuberculosis: a systematic review and meta-analysis. BMC Infect Dis 2019; 268. https://doi.org/10.1186/s12879-019-3881-y.

Igarashi, Y., Chikamatsu, K., Aono, A., Yi L., Yamada, H., Takaki, A., et al., Laboratory evaluation of the Anyplex TM II MTB/MDR and MTB/XDR tests based on multiplex real-time PCR and melting-temperature analysis to identify Mycobacterium tuberculosis and drug resistance. Diagn Microbiol Infect Dis 2017: 89: 276–281. doi: 10.1016/j.diagmicrobio.2017.08.016.

Molina-Moya, B., Lacoma, A., Prat, C., Pimkina, E., Diaz, J., García-Sierra, N., et al., Diagnostic accuracy study of multiplex PCR for detecting tuberculosis drug resistance. J Infect 2015; 71: 220–230. doi: 10.1016/j.jinf.2015.03.011.

Pholwat, S., Stroup, S., Foongladda, S., Houpt, E. Digital PCR to detect and quantify heteroresistance in drug resistant Mycobacterium tuberculosis. PLoS One 2013; 8:e57238. doi: 10.1371/journal.pone.0057238.

Morley, A. A. Digital PCR: a brief history. Biomol Detect Quantif. 2014; 1: 1–2. doi: 10.1016/j.bdq.2014.06.001.

Manson, A. L., Cohen, K. A., Abeel, T., Desjardins, C. A., Armstrong, D. T., Barry, C. E., et al., Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nat Genet 2017; 49(3): 395-402. doi: 10.1038/ng.3767.

Zignol, M., Cabibbe, A. M., Dean, A. S., Glaziou, P., Alikhanova, N., Ama, C., et al., Genetic sequencing for surveillance of drug resistance in tuberculosis in highly endemic countries: a multi-country population-based surveillance study. Lancet Infect Dis 2018; 18: 675–683. doi: 10.1016/S1473-3099(18) 30073-2.

Noyer, C., Abot, A., Trouilh, L., Leberre, V. A., Dreanno, C. Phytochip: development of a DNA-microarray for rapid and accurate identification of Pseudo-nitzschia spp and other harmful algal species. J. Microbiol 2015; 112: 55–66. doi: 10.1016/j.mimet.2015.03.002.

Tsung-Yun, H., Chiang-Ni, C., Teng, S. Current status of MALDI-TOF mass spectrometry in clinical microbiology. Journal of Food and Drug Analysis 2019; 27(2): 404-414. https://doi.org/10.1016/j.jfda.2019.01.001.

Lange, C, Dheda, K., Chesov, D., Mandalakas, A. M., Udwadia, Z., Horsburgh, C. R. Jr. Management of drug-resistant tuberculosis. Lancet 2019; 394(10202): 953-966. Doi: 10.1016/S0140-6736(19)31882-3.

Implementing the End TB Strategy: the essentials (WHO/HTM/TB/2015.31). Geneva, World Health Organization. 2015. Available from: http://www.who.int/tb/publications/2015/end_tb_essential.pdf.

WHO consolidated guidelines on tuberculosis. Module 4: Treatment. Drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2020.

Nahid, P., Mase, S. R., Migliori, G. B., Sotgiu, G., Bothamley, G. H., Brozeket, J. L., et al., Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline [published correction appears in Am J Respir Crit Care Med 2020; 201(4): 500-501. Am J Respir Crit Care Med. 2019; 200(10): e93-e142. doi:10.1164/rccm.201909-1874ST.

Nunn, A. J., Phillips, P. P. J., Meredith, S. K., Chiang, C. Y., Conradie, F., Dalai, D., et al., STREAM Study Collaborators. A Trial of a Shorter Regimen for Rifampin-Resistant Tuberculosis. N Engl J Med. 2019 Mar 28; 380(13): 1201-1213. doi: 10.1056/NEJMoa1811867.

Gama, E., Madan, J., Langley, I., Girma, M., Evans, D., Rosen, S., et al., Economic evaluation of a shortened standardised treatment regimen of antituberculosis drugs for patients with multi drug resistant tuberculosis (STREAM): study protocol. BMJ Open 2016; 6: e014386. DOI: 10.1136/bmjopen-2016-014386.

Frank, D. J., Horne, D. J., Dutta, N. K., Shaku, M. T., Madensein, R., Hawn, T. R., et al., Remembering the Host in Tuberculosis Drug Development. J Infect Dis 2019; 219(10): 1518-1524. doi:10.1093/infdis/jiy712.

Palucci, I., Delogu, G. Host Directed Therapies for Tuberculosis: Futures Strategies for an Ancient Disease. Chemotherapy 2018; 63(3): 172-180. doi:10.1159/ 000490478.

Abreu, R., Giri, P., Quinn, F. Host-Pathogen Interaction as a Novel Target for Host-Directed Therapies in Tuberculosis. Front Immunol. 2020; 11: 1553. doi:10.3389/ fimmu.2020.01553.

Zumla, A., Rao, M., Dodoo, E., Maeurer, M. Potential of immunomodulatory agents as adjunct host-directed therapies for multidrug-resistant tuberculosis. BMC Med 2016; 14: 89. doi:10.1186/s12916-016-0635-1.

Dara, Y., Volcani, D., Shah, K., Shin, K., Venketaraman, V. Potentials of Host-Directed Therapies in Tuberculosis Management. J Clin Med. 2019; 8(8): 1166. doi:10.3390/jcm8081166.

Adeniji, A. A., Knoll, K. E., Loots, D. T. Potential anti-TB investigational compounds and drugs with repurposing potential in TB therapy: a conspectus. Appl Microbiol Biotechnol 2020; 104(13): 5633-5662. doi:10.1007/s00253-020-10606-y.

Hayford, F. E. A., Dolman, R. C., Blaauw, R., Nienaber, A., Cornelius, S. C. M., Malanet, L., et al., The effects of anti-inflammatory agents as host-directed adjunct treatment of tuberculosis in humans: a systematic review and meta-analysis. Respir Res 2020; 21(1): 223. doi:10.1186/s12931-020-01488-9.

Dutta, N. K., Bruiners, N., Zimmerman, M. D., Tan, S., Dartois, V., Gennaroet, M. L., et al., Adjunctive Host-Directed Therapy with Statins Improves Tuberculosis-Related Outcomes in Mice. J Infect Dis. 2020; 221(7): 1079-1087. doi:10.1093/infdis/jiz517.

Skerry, C., Harper, J., Klunk, M., Bishai, W. R., Jain, S. K. Adjunctive TNF inhibition with standard treatment enhances bacterial clearance in a murine model of necrotic TB granulomas. PLoS One 2012; 7(6): e39680. doi:10.1371 /journal.pone.0039680.

Johnson, J. L., Ssekasanvu, E., Okwera, A., Mayanja, H., Hirsch, C. S., Nakibali, J. G., et al., Randomized trial of adjunctive interleukin-2 in adults with pulmonary tuberculosis. Am J Respir Crit Care Med 2003; 168(2): 185-191. doi:10.1164/rccm.200211-1359OC.

Patil, K., Bagade, S., Bonde, S., Sharma, S., Saraogi, G. Recent therapeutic approaches for the management of tuberculosis: Challenges and opportunities. Biomed Pharmacother 2018; 99: 735-745. doi:10.1016/j.biopha. 2018.01.115.

The US Food and Drug Administration: News release. Available at https://www.fda.gov/news-events/press-announcements/fda-approves-new-drug-treatment-resistant-forms-tuberculosis-affects-lungs. Accessed on August 28, 2020.

Conradie, F., Diacon, A. H., Everitt, D., Mendel, C., van-Niekerk, C., Howell, P., et al., The NIX-TB trial of pretomanid, bedaquiline and linezolid to treat XDR TB. Presented at the Conference on Retroviruses and Opportunistic Infections (CROI) 2017. Seattle, Washington. February 15, 2017.

US Food and Drug Administration (FDA): Press release. Available at: https://www.fda.gov/news-events/press-announcements/fda-approves-new-drug-treatment-resistant-forms-tuberculosis-affects-lungs. Accessed on August 18, 2020.

Achar, J., Hewison, C., Cavalheiro, A.P., Skrahina, A., Cajazeiro, J., Nargiza, P., et al., Off-Label Use of Bedaquiline in Children and Adolescents with Multidrug-Resistant Tuberculosis. Emerg Infect Dis 2017; 23(10): 1711-1713. doi: 10.3201/eid2310.170303.

European Medicines Agency (EMA): Press release. Available at https://www.ema.europa.eu/en/news/european-medicines-agency-recommends-two-new-treatment-options-tuberculosis. Accessed on September 4, 2020.

Campaniço, A., Moreira, R., Lopes, F. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. Eur J Med Chem 2018; 150: 525-545. doi:10.1016/j.ejmech.2018.03.020.

Downloads

Published

2021-10-29

How to Cite

1.
Sannathimmappa M, Gouda Parameshwara P, Aravindakshan R, Nambiar V. Global scenario and recent advances in molecular diagnosis and management of drug-resistant tuberculosis. Biomedicine [Internet]. 2021 Oct. 29 [cited 2024 Mar. 29];41(3):522-30. Available from: https://biomedicineonline.org/index.php/home/article/view/441

Plum Analytics