Due to transition in the journal platform, the previously submitted articles, which are under process can be re-submitted here for quick process, kindly co-operate

Biomedicine

Volume: 43 Issue: 3

  • Open Access
  • Review Article

Impact of reactive oxygen species on the progression of human diseases by damaging biomolecules

Vinay Pathak, Ruchi Kant, Navneet Kumar

College of Paramedical Sciences, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India

Corresponding author: Navneet Kumar. Email: [email protected]

Year: 2023, Page: 821-824, Doi: https://doi.org/10.51248/.v43i3.2439

Abstract

Reactive oxygen species (ROS) are the molecules which have oxygen an atom in its highly reactive form. ROS are formed as a byproduct of normal metabolism and are removed by the antioxidants and enzymes present in the system. But, uncontrolled formation of ROS due to various factors like diseases or stress causes damage to the biomolecules. This oxidation of biomolecules by ROS might help in the progression of human diseases. Understanding the mechanism of development of different human diseases caused due to ROS will help to control the severity of the diseases. Also, on the basis of types of ROS involved, an antioxidant supplement can be selected to mitigate the effect of ROS and ultimately lower the severity of the disease. In this review article, we have tried to summarize the literature available from different sources on ROS formation, biomolecule oxidation and their impact on the progression of various diseases in humans.

Keywords: Reactive oxygen species; oxidative stress; biomolecule oxidation; antioxidants

References

1. Juan, C.A., Pérez, J.M., Plou, F.J., Pérez-Lebeña, E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, Lipids and Proteins) and Induced pathologies. Int J Mol Sci. 2021; 22(9):4642-4662.

2. Khalid, S., Yamazaki, H., Socorro, M., Monier, D., Beniash, E., Napierala, D., Reactive oxygen species (ROS) generation as an underlying mechanism of inorganic phosphate (Pi)-induced mineralization of osteogenic cells. Free Radic Biol Med. 2020;153:103-111.

3. Dayem, A. A., Hossain, M.K., Lee, S.B., Kim, K., Saha, S.K., Yang, G.M., et al., The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci. 2017;18(1):120-140.

4. Lee, J., Song, C.H., Effect of reactive oxygen species on the endoplasmic reticulum and mitochondria during intracellular pathogen infection of mammalian cells. Antioxidants. 2021; 10(6):872-892.

5. Deepika, Maurya, P.K., Health benefits of quercetin in age-related diseases. Molecules. 2022; 27(8):2498-2511.

6. Ahmadi, S.A., Kazemi, A., Sabahi, M., Razipour, S., Salehipour, A., Ghiasian, M., et al., Probable antioxidant therapy of Saffron Crocin in patients with multiple sclerosis: A randomized controlled trial. Biomedicine. 2020;40(4):516-521.

7. Selemidis, S. Targeting reactive oxygen species for respiratory infection: Fact or fancy? Respirology. 2019; 24(1):15-16.

8. Johnson, O.O., Oladiji, A.T., Oladele, O.T., Oyeleke, O.M., Reactive oxygen species in neurodegenerative diseases: Implications in pathogenesis and treatment strategies. Reactive Oxygen Species [Internet]. IntechOpen; 2021.

9. Khan, F., Garg, V.K., Singh, A.K., Kumar, T., Role of free radicals and certain antioxidants in the management of Huntington’s disease: a review. J Anal Pharm Res. 2018; 7(4):386-392.

10. Cui, X., Zhang, Y., Lu, Y., Xiang, M., ROS and endoplasmic reticulum stress in pulmonary disease. Front Pharmacol. 2022; 13:1-15.

11. Taniguchi, A., Tsuge, M., Miyahara, N., Tsukahara, H., Reactive Oxygen Species and Antioxidative Defense in Chronic Obstructive Pulmonary Disease. Antioxidants. 2021; 10(10):1537-1558.

12. Zhang, Q., Lin, J.L., Thomas, P.S., Reactive oxygen species and obstructive lung disease. In: Laher I, editor. Systems

biology of free radicals and antioxidants. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 1643-1670.

13. Zuo, L., Wijegunawardana, D., Redox role of ROS and inflammation in pulmonary diseases. In: Wang YX, editor. Lung Inflammation in Health and Disease, Volume II. Cham: Springer International Publishing; 2021. p. 187-204.

14. Margaritelli, N.V., Cobley, J.N., Paschalis, V., Veskoukis, A.S., Theodorou, A.A., Kyparos, A., et al. Going retro: Oxidative stress biomarkers in modern redox biology. Hum Perform Redox Signal Health Dis. 2016; 98:2-12.

15. Barnes, P.J., Oxidative stress-based therapeutics in COPD. Lung Redox Ther. 2020; 33:101544-101551.

16. Kalyanaraman, B., Do free radical NETwork and oxidative stress disparities in African Americans enhance their vulnerability to SARS-CoV-2 infection and COVID-19 severity? Redox Biol. 2020; 37:101721-101731.

17. Goud, P.T., Bai, D., Abu-Soud, H.M., A Multiple-hit hypothesis involving reactive oxygen species and myeloperoxidase explains clinical deterioration and fatality in COVID-19. Int J Biol Sci. 2021;17(1):62-72.

18. Cecchini, R, Cecchini, A.L., SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses. 2020; 143:110102-110106.

19. Wenzhong, L., Hualan, L., COVID-19: captures iron and generates reactive oxygen species to damage the human immune system. Autoimmunity. 2021; 54(4):213-224.

20. Derouiche, S., Oxidative Stress associated with SARS-Cov-2 (COVID-19) increases the severity of the lung disease - A Systematic Review. J Infect Dis Epidemiol. 2020;(6):121-126.

21. Ahmed, O.M., Mohammed, M.T., Oxidative stress: The role of reactive oxygen species (ROS) and Antioxidants in human diseases. Plant Arch. 2020;20(Supplement 2):4089-4095.

22. Checa, J., Aran, J., Reactive Oxygen species: drivers of physiological and pathological processes. J Inflamm Res. 2020; 13:1057-1073.

23. Boengler, K., Kosiol, M., Mayr, M., Schulz, R., Rohrbach, S., Mitochondria and aging: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle. 2017; 8(3):349-369.

24. Breitzig, M., Bhimineni, C., Lockey, R., Kolliputi, N., 4-Hydroxy-2-nonenal: a critical target in oxidative stress? Am J Physiol Cell Physiol. 2016/07/06 ed. 2016;311(4):C537-C543.

25. Zuo, L., Prather, E.R., Stetskiv, M., Garrison, D.E., Meade, J.R., Peace, T.I., et al. Inflammation and oxidative stress in human diseases: From molecular mechanisms to novel treatments. Int J Mol Sci. 2019;20(18):4472-4510.

26. Ahmadi, A., Hayes, A.W., Karimi, G., Resveratrol and endoplasmic reticulum stress: A review of the potential protective mechanisms of the polyphenol. Phytother Res. 2021; 35(10):5564-5583.

27. Peng, C., Wang, X.B., Chen, J., Jiao, R., Wang, L., Li, C., et al. Biology of ageing and role of dietary antioxidants. BioMed Res Int. 2014; 2014:831841-831853.

28. Incalza, M.A., D’Oria, R., Natalicchio, A., Perrini, S., Laviola, L., Giorgino, F., Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vasc Pharmacol. 2018;100:1-19.

29. Chen, Q., Wang, Q., Zhu, J., Xiao, Q., Zhang, L., Reactive oxygen species: key regulators in vascular health and diseases. Br J Pharmacol. 2018; 175(8):1279-1292.

30. Zhou, T., Prather, E.R., Garrison, D.E., Zuo, L., Interplay between ROS and antioxidants during ischemia-reperfusion injuries in cardiac and skeletal muscle. Int J Mol Sci. 2018; 19(2):417-436.

31. Sharifi-Rad, M., Kumar N.V.A., Zucca, P., Varoni, E.M., Dini, L., Panzarini, E., et al. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front Physiol. 2020;11: 694-714.

32. Winter, A.N., Ross, E.K., Wilkins, H.M., Stankiewicz, T.R., Wallace, T., Miller, K., et al., An anthocyanin-enriched

extract from strawberries delays disease onset and extends survival in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Nutr Neurosci. 2018; 21(6):414-426.

33. Zullo, A., Guida, R., Sciarrillo, R., Mancini, F.P., Redox homeostasis in cardiovascular disease: The role of mitochondrial sirtuins. Front Endocrinol. 2022;13: 858330- 858337.

34. Monceaux, K., Gressette, M., Karoui, A., Silva, J.P., Piquereau, J., Ventura-Clapier, R., et al. Ferulic Acid, pterostilbene, and tyrosol protect the heart from ER-stress-induced injury by activating SIRT1-dependent deacetylation of eIF2alpha. Int J Mol Sci. 2022;23(12): 6628-6650.

35. Yang, S., Lian, G., ROS and diseases: role in metabolism and energy supply. Mol Cell Biochem. 2020;467:1-12.

36. Dogru, M., Kojima, T., Simsek, C., Tsubota, K., Potential role of oxidative stress in ocular surface inflammation and dry Eye disease. Invest Ophthalmol Vis Sci. 2018;59(14): DES 163-168

Cite this article

Vinay Pathak, Ruchi Kant, Navneet Kumar. Impact of reactive oxygen species on the progression of human diseases
by damaging biomolecules. Biomedicine: 2023; 43(3): 821-824

Views
187
Downloads
50
Citations