Volume: 43 Issue: 2
Year: 2023, Page: 541-544, Doi: https://doi.org/10.51248/.v43i02.837
Blindness, being one of the most common disabilities in humans, is often caused due to various infections in the anterior and posterior regions of the Human eye. One of the common reasons include a significant variation in the levels of fluid in the retina of the eye. This may be due to excessive fluids or due to reduction in the levels of fluids. This paper reviews various tools of assessment designed towards early detection and diagnosis of such fluid filled abnormalities. The proposed idea has evaluated the various methodologies that have been designed and implemented using Image processing techniques, beginning from the preprocessing to classification at different stages. Not only focusing on binary classification, say normal and abnormal, various other techniques to classify the input image as Choroidal NeoVascular Membrane (CNVM), Cystoid Macular Edema (CME), Macular Hole (MH) and normal images has also been validated. Validation of the implemented speckle noise removal preprocessing filters and classifiers for efficient classification has also been focused on the paper.
Keywords: Optical coherence tomography; fundus Imaging; classifiers; medical image processing
1. Wojtkowski, M., Leitnerg, R., Kowalczyk, A., Bajraszewski, T., Fercher, A.F. In vivo human retinal imaging by Fourier domain
optical coherence tomography, J. Biomed. Opt. July 2002; 7(3):457-463.
2. de Boer, J.F., Cense, B., Park, B.H., Pierce, M.C., Tearney, G. J., Bouma, B.E. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett., Nov 2003; 28(21): 2067-2069.
3. Yazdanpanah, A., Hamarneh, M.G., Smith, B., Sarunic, M. Intra-retinal layer segmentation in optical coherence tomography using an active contour approach, Medical Image Computing and Computer-Assisted Intervention -MICCAI 2009, Part II. NewYork: Springer, 2009.
4. Koozekanani, D., Boyer, K., Roberts, C. Retinal thickness measurements from optical coherence tomography using a Markov boundary model, IEEE Trans. Med. Imag. Sep 2001; 20(9): 900-916.
5. Ishikawa, H., Stein, D.M., Wollstein, G., Beaton, S., Fujimoto, J.G., Schuman, J.S. Macular segmentation with optical coherence tomography, Invest. Ophthalmol. Vis. Sci. June 2005; 46(6): 2012-2017.
6. Fernández, C.D. Salinas, H.M., Puliafito, C.A. Automated detection of retinal layer structures on optical coherence tomography images, Opt. Exp.2005; 13(25): 10200-10216.
7. Shahidi, M., Wang, Z., Zelkha, R. Quantitative thickness measurement of retinal layers imaged by optical coherence tomography, Am.J. Ophthalmol., Jun. 2005; 139(6): 1056-1061.
8. Baroni, M., Fortunato, P., Torre, A.L. Quantitative analysis of retinal features in optical coherence tomography, Med. Eng.Phys.May 2001; 29(4): 432-441.
9. Fuller, A., Zawadzki, R., Choi, S., Wiley, D., J. Werner, J., Hamann, B. Segmentation of three-dimensional retinal image data, IEEE Trans.Vis. Comput. Graphics, Nov./Dec/ 2007; 13(6): 1719-1726.
10. Garvin, M.K., Abràmoff, M.D., Kardon, R., Russell, S.R., Wu, X., Sonka, M. Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search, IEEE Trans.Med. Imag. Oct. 2008; 27(10):1495-1505.
11. Garvin, M.K., Abràmoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M. Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images, IEEE Trans.Med. Imag. 2009; 28(9):1436-1447.
12. Hu, Z., Niemeijer, M., Abràmoff, M.D., Mona, K. Garvin, Multimodal Retinal Vessel Segmentation From Spectral-Domain Optical Coherence Tomography and Fundus Photography, IEEE Trans. Med. Imag, Oct 2012; 31(10):1900-1911.
13. Fernández, D.C. Delineating fluid-filled region boundaries in optical coherence tomography images of the retina, IEEE Trans. Med. Imag. Aug, 2005; 24(8):929-945.
14. Quellec, G., Lee, K., Dolejsi, M., Garvin, M.K., Abramoff, M.D., Sonka, M. Three-dimensional analysis of retinal layer texture: Identification of fluid-filled regions in SD-OCT of the macula, IEEE Trans. Med. Imag., June 2010; 29(6):1321-1330.
15. Venkatraman,K., Sumathi,M. Review of Optical Coherence Tomography Image Analysis for Retinal Disorders, Int J of Pharm & Tech. 2014; 6(2):2967-2980.
16. Sun, S., Guo, Q., Lei, B., Gao, B.Z., Dong, F. Image denoising algorithm based on contourlet transform for optical coherence tomography heart tube image. IET Image Process. 2013; 7(5): 442-450.
17. Avanaki, M.R.N., Cernat, R., Tadrous, P.J., Tatla, T., Podoleanu, A.G., Hojatoleslami, A. S. Spatial compounding algorithm for speckle reduction of dynamic focus OCT images. IEEE Photonics Technol Lett. 2013; 25(15):1439-1442.
18. Manojlovic, L.M. Novel Method for Optical Coherence Tomography Resolution Enhancement.IEEE J. Quantum Electron. 2011; 47(3):340-347.
19. Wilkins, G.R., Houghton, O.M., Oldenburg, A.L. Automated segmentation of intrarentinal cystoid fluid in optical coherence tomography. IEEE Trans Biomed Eng. 2013; 59(4):1109-1114.
20. Wang, C., Wang, Y.X., Li, Y. Automatic choroidal layer segmentation using markov random field and level set method. IEEE J. Biomed Heal Informatics. 2017; 21(6):1694-1702.
21. Niu, S., Chen, Q. L., de Sisternes, Rubin, D.L., Zhang, W., Liu, Q. Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint.ComputBiol Med. 2015; 5:116-128.
22. Maria, A.Measures of Diagnostic Accuracy: Basic Definitions. EJIFCC. 2009; 19(4): 203-211.
23. Guo, J., Shi, F., Zhu, W., Chen, H., Chen, X. A framework for classification and segmentation of branch retinal artery occlusion in SD-OCT. Prog Biomed Opt Imaging - Proc SPIE. 2016; 9784(7):3518-3527
24. Hussain, M.A., Bhuiyan, A., Turpin, A., Luu, C.D., Smith, T. R., Guymer, R.H., Kotagiri, R.R. Automatic identification of pathology-distorted retinal layer boundaries using SD-OCT imaging. IEEE Trans Biomed Eng. 2017; 64(7):1638-1649.
25. Venkatraman, K., Sumathi, M. A Study on Fluid based Retinal abnormalities Analysis from OCT Images using SVM Classifier, 6th International Conference on Advanced Computing and Communication Systems, ICACCS 2020; 9074450:86-89.
26. Venkatraman, K., Sumathi, M., Feature based Differentiator for fluid filled Retinal Abnormalities in Retina using OCT Images, Journal of Medical Imaging and Health Informatics. 2020; 10(3):566-571.
27. Venkatraman, K., Sumathi, M. Automations in OCT imaging – A tool in analysis of fluid based retinal abnormalities, International Journal of Scientific and Technology Research. 2020; 9(1):4362-4365.
28. Venkatraman, K., Sumathi, M. Classification of retinal disorders based on fluid patterns in OCT images, Indian Journal of Public Health Research and Development. 2019; 10(7):1367-1370.
29. Venkatraman, K., Sumathi, M. Segmentation of optical coherence tomography images for analysis of fluid related abnormalities, Biomedicine (India). 2019; 39(1):74-80.
30. Shaw, P.R., Sumathi, M., Burnwal, S., Venkatraman,K. Study of removal of speckle noise from OCT images, Biomedicine (India), 2015; 35(3):313-317.
31. Venkatraman, K. Glaucoma detection in optical coherence tomography based on fuzzy C-means Clustering, International Journal of Pharmacy and Technology, 2015; 7(2):8817-8822.
32. Venkatraman, K., Sumathi, M., Performance evaluation of speckle reduction filters for optical coherence tomography images, International Journal of Pharma and Bio Sciences, 2015; 6(2):B837-B845
Venkatraman K.Retinal analysis from OCT images to identify fluid filled abnormalities. Biomedicine: 2023; 43(2): 541-544