Volume: 44 Issue: 1
Year: 2024, Page: 13-20, Doi: https://doi.org/10.51248/.v44i1.4155
Received: Nov. 22, 2022 Accepted: Oct. 12, 2023 Published: April 24, 2024
The most common treatment modes of cancer include chemotherapies along with other modes of treatment. But often resistance is developed and gruels towards the discovery of new modes of treatment for cancer. Natural products are used for ages in the treatment. One such component is thymoquinone (TQ). It has been extensively studied against cancer, especially in treating breast cancer. The review article updates its status on research against breast cancer and triple negative breast cancer. The paper describes various breast cancer (BC) treatment options in combination with TQ or alone such as heat shock 70-kDa protein 6 (HSPA6) situated on human chromosome in inhibition of BC growth, MMP-9 and MMP-2 as biomarkers in BC, use of cancer stem cells in vascular formation in solid tumor by VM (vascular mimicry) via MMP-2 and MT1-MMP genes upregulation, use of exosomes extracted from adipocyte-derived mesenchymal stem cells, cancer immunotherapy or immuno-oncology where natural killer lymphocyte cells are used to enhance innate immune response against tumors and pathogens, use of (TRAIL) tumor necrosis factor-related apoptosis-inducing ligand agonists, drugs with synergistic activity, identifying targeted genes IL17RD, and diet having natural molecules that can act potentially against cancer. The article also updates on research associated with TQ in overcoming hindrances related to its poor bioavailability making it an effective clinically acting drug molecule. Recent research indicates that TQ can be a successful candidate to eradicate cancer through its clinical interventions followed by drug design studies.
Keywords: Thymoquinone; triple negative breast cancer; therapy.
Mohsen, E., El-Far, A.H., Godugu, K., Elsayed, F., Mousa, S.A., Younis, I.Y. SPME and solvent-based GC–MS metabolite profiling of Egyptian marketed Saussurea costus (Falc.) Lipsch. concerning its anticancer activity. Phytomedicine Plus. 2022; 2:100209.
El-Far, A.H., Darwish, N.H.E., Mousa, S.A. Senescent colon and breast cancer cells induced by doxorubicin exhibit enhanced sensitivity to curcumin, caffeine, and thymoquinone. Integrative Cancer Therapies. 2020; 19:1534735419901160.
Wong, S.C., Kamarudin, M.N.A., Naidu, R. Anticancer mechanism of curcumin on human glioblastoma. Nutrients. 2021;13:950.
Farghadani, R., Naidu, R. Curcumin as an enhancer of therapeutic efficiency of chemotherapy drugs in breast cancer. International Journal of Molecular Sciences. 2022;23:2144.
Joshi, P., Joshi, S., Semwal, D., Bisht, A., Paliwal, S., Dwivedi, J., et al., Curcumin: an insight into molecular pathways involved in anticancer activity. Mini-Reviews in Medicinal Chemistry. 2021; 21:2420-2457.
Salehi, B., Stojanovic-Radic, Z., Matejic, J., Sharifi-Rad, M., Anil Kumar, N.V., Martins, N., et al., The therapeutic potential of curcumin: A review of clinical trials. European Journal of Medicinal Chemistry. 2019; 163:527-545.
Ahmad, A., Mishra, R.K., Vyawahare, A., Kumar, A., Rehman, M.U., Qamar, W., et al., Thymoquinone (2-Isopropyl-5-methyl-1, 4-benzoquinone) as a chemopreventive/anticancer agent: Chemistry and biological effects. Saudi Pharmaceutical Journal. 2019;27:1113-1126.
Hannan, M.A., Rahman, M.A., Sohag, A.A.M., Uddin, M.J., Dash, R., Sikder, M.H., et al., Black Cumin (Nigella sativa L.): A comprehensive review on phytochemistry, health benefits, molecular pharmacology, and safety. Nutrients. 2021;13:1784.
Samarghandian, S., Azimi-Nezhad, M., Farkhondeh, T. Thymoquinone-induced antitumor and apoptosis in human lung adenocarcinoma cells. Journal of Cellular Physiology. 2019;234:10421-10431.
Adinew, G.M., Taka, E., Mendonca, P., Messeha, S.S., Soliman, K.F.A. The anticancer effects of flavonoids through miRNAs modulations in triple-negative breast cancer. Nutrients. 2021;13:1212.
Yimer, E.M., Tuem, K.B., Karim, A., Ur-Rehman, N., Anwar, F. Nigella sativa L. (Black Cumin): A promising natural remedy for a wide range of illnesses. Evidence Based Complementary and Alternative Medicine. 2019; 6:1-16.
Alhmied, F., Alammar, A., Alsultan, B., Alshehri, M., Pottoo, F.H. Molecular mechanisms of thymoquinone as anticancer agents. Combinatorial Chemistry and High Throughput Screening. 2021; 24:1644-1653.
Phua, C.Y.H., Teoh, Z.L., Goh, B.H., Yap, W.H., Tang, Y.Q. Triangulating the pharmacological properties of thymoquinone in regulating reactive oxygen species, inflammation, and cancer: Therapeutic applications and mechanistic pathways. Life Sciences. 2021; 287:120120
Almajali, B., Al-Jamal, H.A.N., Taib, W.R.W., Ismail, I., Johan, M.F., Doolaanea, A. A., et al., Thymoquinone, as a novel therapeutic candidate of cancers. Pharmaceuticals. 2021; 14:369.
Salam, N.M.A., Rabou, A.A.A., Sharada, H.M., Samea, G.G.A.E., Abdalla, M.S. Combination therapy of TRAIL and thymoquinone induce breast cancer cell cytotoxicity-mediated apoptosis and cell cycle arrest. Asian Pacific Journal of Cancer Prevention. 2021;22 (5):1513-1521.
Adinew, G.M., Samia, S., Messeha, Taka, E., Ramesh, B., et al., Thymoquinone alterations of the apoptotic gene expressions and cell cycle arrest in genetically distinct triple-negative breast cancer Cells. Nutrients. 2022; 14, 2120. 34. Khan, M. A., Meiling, Z., Fu, J. Tania, M., Li, J., Fu, J. Thymoquinone upregulates IL17RD in controlling the growth and metastasis of triple negative breast cancer cells in vitro. BMC Cancer. 2022; 22:707.
Wei, S.S.C., and Junjiang, Fu. RNA-Sequencing reveals heat shock 70-kDa Protein 6 (HSPA6) as a novel thymoquinone-upregulated gene that inhibits growth, migration, and invasion of triple-negative breast cancer cells. Frontiers in Oncology. 2021; 11:667995.
Alshaibi, H. F., Aldarmahi, N. A., Alkhattabi, N. A., Alsufiani, H. M., Tarbiah, N. I. Studying the anticancer effects of thymoquinone on breast cancer cells through natural killer cell activity. BioMed Research International. 2022; 9218640.
Haiaty, S., Rashidi, M. R., Akbarzadeh, M., Bazmany, A., Mostafazadeh, M., Nikanfar, S., et al., Thymoquinone inhibited vasculogenic capacity and promoted mesenchymal epithelial transition of human breast cancer stem cells. BMC Complementary Medicine and Therapies. 2021; 21:83.
Saddiq, A.A., El-Fa, A.H., Mohamed, S.A., Almaghrabi, O.A., Mousa, S.A. Curcumin and thymoquinone combination attenuates breast cancer cell lines’ progression. Integrative Cancer Therapies. 2022;21:1-14.
Moubarak, M.M., Chanouha, N.A.I.N., Khalife, H., Gali-Muhtasib, H. Thymoquinone anticancer activity is enhanced when combined with royal jelly in human breast cancer. World Journal of Clinical Oncology. 2021;12(5): 342-354.
Bhattacharya, S., Ghosh, A., Maiti, S., Ahir, M., Debnath, G.H., Gupta, P., et al., Delivery of thymoquinone through hyaluronic acid-decorated mixed Pluronic(R) nanoparticles to attenuate angiogenesis and metastasis of triple-negative breast cancer. Journal of Controlled Release. 2020; 322:357-374.
Vani Mamillapalli, Vinuthna Rallapalli, Zyba Mohammed, Dharani Motukuru, SRG Sowgandhika Kosuri, Padmalatha Kantamaneni. Thymoquinone: A novel treatment option for triple negative breast cancer. Biomedicine: 2024; 44(1): 13-20