Due to transition in the journal platform, the previously submitted articles, which are under process can be re-submitted here for quick process, kindly co-operate

Biomedicine

Volume: 44 Issue: 1

  • Open Access
  • Review Article

Tissue-free non-invasive diagnostic methodology for brain tumour: Present scenario and future direction

 

Anirban Ghosh1, Shubhamitra Chaudhuri2 

 

1Cell Development and Immunobiology Laboratory (CDIL), Department of Zoology, School of Sciences, Netaji Subhas Open University, Kolkata, West Bengal, India 

2Department of Neurosurgery, Bangur Institute of Neurosciences, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, West Bengal, India 

 

Corresponding author: Anirban Ghosh. Email: [email protected], [email protected] 

Year: 2024, Page: 39-45, Doi: https://doi.org/10.51248/.v44i1.4045

Received: Dec. 21, 2023 Accepted: Feb. 28, 2024 Published: April 24, 2024

Abstract

Intracranial neoplasia is characterized by their various forms and functions including gliomas which are hard to detect properly, monitor and treat in any therapeutic regime. Present day MRI based techniques act efficiently to detect and acquire the spatial information but fall apart to gather sufficient biological attributes of the lesion to monitor and treat accordingly. In contrast, invasive biopsy is difficult within the cranium and poses a serious threat to lead metastasis. Therefore, a prominent parallel initiative has been undertaken throughout the global community to find out potential diagnostic protocols to diagnose and monitor brain tumour in a non-invasive way. Like other cancers, liquid biopsy by obtaining cellular and molecular components from the brain tumour, either from fluid-filled CNS ventricles or CSF, or leaching out into the peripheral biofluids are under constant scrutiny for finding out different molecular signatures of neoplastic growth applying innovative biomedical methodologies and instrumentations. At the same time, a new domain of research applying computer aided methods of image analysis has opened up to assist the process more potently. In this short review, we tried to show the glimpses of these newer areas and approaches of brain tumour diagnosis which may revolutionize the future of brain tumour diagnosis. Also, we hint at some potential routes to acquire biomolecular information on the brain and how higher order integration of data processing from biological and radiological fronts may be the future of these diagnostics. 

Keywords: Brain tumour; computer-aided diagnosis; liquid biopsy; biomarkers; deep-learning; AI

References

 

1. Grant, R. Overview: brain tumour diagnosis and management/Royal College of Physicians guidelines. J Neurol Neurosurg Psychiatry. 2004;75(suppl_2): ii18-ii23

2. Gao, H., Jiang, X. Progress on the diagnosis and evaluation of brain tumors. Cancer Imaging. 2013; 13(4):466-481. 

3. Abd-Ellah, M.K., Ismail Awad, A., Khalaf, A.A.M., Hamed, H.F.A. A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magn Reson Imaging. 2019; 61:300-318. 

4. Bauer, S., Wiest, R., Nolte, L.P., Reyes, M. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol. 2013; 58(13): R97-R129. 

5. Larsson, H.B.W., Stubgaard, M., Frederiksen, J.L., Jensen, M., Henriksen, O., Poulson, O.B. Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med. 1990;16(1): 117-131. 

6. Bonnemain, B. Superparamagnetic agents in magnetic resonance imaging: Physicochemical characteristics and 

clinical applications. A review. J Drug Target.1998;6:167-174. 7. Zhang, D., Feng, X.Y., Henning, T.D., Wen, L., Lu, W.Y., Pan, H., et al., MR imaging of tumor angiogenesis using sterically stabilized Gd-DTPA liposomes targeted to CD105. Euro J Radio. 2009;70(1):180-189. 

8. El-Dahshan, E.S.A., Heba, M.M., Kenneth, R., Abdel-Badeeh, M.S. Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm. Expert Syst Appl. 2014; 41(11):5526-5545. 

9. Patterson, J., Gibson, A. Deep Learning a Practitioner's Approach. 1st ed. 1005 Gravenstein Highway North, Sebastopol: O’Reilly Media; 2017;1-40. 

10. Mohsen, H., El-Dahshan, E.S.A., El-Horbaty, E.S.M., Salem, A.B.M. Classification using deep learning neural networks for brain tumors. Future Comput Inf J. 2018;3: 68-71. 11. Abd-Ellah, M.K., Awad, A.I., Khalaf, A.A.M., Hamed, H.F.A. A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magn Reson Imaging. 2019; 61:300-318. 

12. Lone, S.N., Nisar, S., Masoodi, T., Singh,M., Rizwan, A., Hashem, S., et al., Liquid biopsy: A step closer to transform diagnosis, prognosis and future of cancer treatments. Mol Cancer. 2022;21:79. 

13. Palmirotta, R., Lovero, D., Cafforio, P., Felici, C., Mannavola, F., Pelle, E., et al., Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol. 2018; 10:1758835918794630. 

14. Perakis, S., Speicher, M.R. Emerging concepts in liquid biopsies. BMC Med. 2017;15:75. 

15. Dianat-Moghadam, H., Azizi, M., Eslami, S. Z., Hernandez, L.E.C., Heidarifard, M., Nouri, M., et al., The role of circulating tumor cells in the metastatic cascade: Biology, technical challenges, and clinical relevance. Cancers. 2020; 12(4): 867. 

16. Yan, W.T., Cui, X., Chen, Q., Li, Y.F., Cui, Y.H., Wang, Y., et al., Circulating tumor cell status monitors the treatment responses in breast cancer patients: a meta-analysis. Sci Rep. 2017;7: 43464. 

17. Sefrioui, D., Blanchard, F., Toure, E., Basile, P., Beaussire, L., Dolfus, C., et al., Diagnostic value of CA19.9, circulating tumour DNA and circulating tumour cells in patients with solid pancreatic tumours. Br J Cancer. 2017; 117:1017-1025. 

18. Parsons HA, Beaver JA, Park BH. Circulating plasma tumor DNA. Adv Exp Med Biol. 2016; 882:259-276. 

19. Han, M., Watts, J.A., Jamshidi-Parsian, A., Nadeem, U., Siegel, E. R., Zharov, V.P., et al., Lymph liquid biopsy for detection of cancer stem cells. Cytometry A. 2021; 99(5): 496-502. 

20. MacArthur, K.M., Kao, G.D., Chandrasekaran, S., Alonso-Basanta, M., Chapman, C., Lustig, R.A., et al., Detection of brain tumor cells in the peripheral blood by a telomerase promoter-based assay. Cancer Res. 2014; 74(8):2152-2159. 

21. Eibl, R.H., Schneemann, M. Liquid Biopsy and Primary Brain Tumors. Cancers (Basel). 2021;13(21): 5429. 

22. Aili, Y., Maimai Timing, N., Mahemuti, Y., Qin, H., Wang, Y., Wang, Z. The role of exosomal miRNAs in glioma: Biological function and clinical application. Front. Oncol. 2021;11: 686369. 

23. Peng, J., Liang, Q., Xu, Z., Cai, Y., Peng, B., Li, J., et al., Current understanding of exosomal MicroRNAs in glioma immune regulation and therapeutic responses. Front Immunol. 2022;12:813747. 

24. Louis, D.N., Perry, A., Wesseling, P., Brat, D.J., Cree, I.A., Figarella- Branger, D., et al., The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 2021;23:1231-1251. 

25. Mair, R., Mouliere, F. Cell-free DNA technologies for the analysis of brain cancer. Br J Cancer. 2022; 126: 371-378. 

26. Miller, A.M., Shah, R.H., Pentsova, E.I., Pourmaleki, M., Briggs, S., Distefano, N., et al., Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature. 2019; 565:654-658. 

27. Mouliere, F., Smith, C.G., Heider, K., Su, J., van der Pol, Y., Thomson, M., et al., Fragmentation patterns and personalized sequencing of cell-free DNA in urine and plasma of glioma patients. EMBO Mol Med. 2021;13: e12881. 

28. Husain, N., Husain, A., Mishra, S., Srivastava, P. Liquid biopsy in CNS tumors: Current status and future perspectives. Ind J Pathol Microbiol. 2022; 65:111-121. 29. Engelhardt, B., Carare, R.O., Bechmann, I., Flugel, A., Laman, J.D., Weller, R.O.Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol. 2016; 132: 317-338. 

30. Papadopoulos, Z., Herz, J., Kipnis, J. Meningeal lymphatics: From anatomy to central nervous system immune surveillance. J Immunol. 2020; 204:286-293

31. Han, X., Wang, J., Sun, Y. Circulating tumor DNA as biomarkers for cancer Detection. Genom Proteom Bioinform. 2017;15:59-72. 32. Connal, S., Cameron, J.M., Sala, A., Brennan, P.M., Palmer, D.S., Palmer, J.D., et al., Liquid biopsies: The future of cancer early detection. J Transl Med. 2023; 21:118. 

Cite this article

 

 Anirban Ghosh, Shubhamitra Chaudhuri. Tissue-free non-invasive diagnostic methodology for brain tumour: Present scenario and future direction. Biomedicine: 2024; 44(1): 39-45 

Views
1917
Downloads
277
Citations